Featured Research

from universities, journals, and other organizations

One Nano-step Closer To Weighing A Single Atom

Date:
August 14, 2009
Source:
University of Melbourne
Summary:
By studying gold nanoparticles with highly uniform sizes and shapes, scientists now understand how they lose energy, a key step towards producing nanoscale detectors for weighing any single atom.

Composite image showing TEM images and schematic of bipyramid-shaped particles and time response of vibration.
Credit: Dr Matthew Pelton from the Centre for Nanoscale Materials, Argonne National Laboratory, Illinois

By studying gold nanoparticles with highly uniform sizes and shapes, scientists now understand how they lose energy, a key step towards producing nanoscale detectors for weighing any single atom.

Such ultrasensitive measurements could ultimately be used in areas such as medical research and diagnostics, enabling the detection of minuscule disease-causing agents such as viruses and prions at the single molecule level.

Researchers are interested in nanosized materials because the smaller the components of a detection device, the more sensitive it is.

In this study, the team from the University of Melbourne, Argonne’s Center for Nanoscale Materials in Illinois and the University of Chicago synthesized and studied tiny gold rods with a width 5000 times smaller than the thickness of a human hair.

The work was recently published online in Nature Nanotechnology.

Professor John Sader from the Department of Mathematics and Statistics, University of Melbourne says that in the same way as a classroom ruler decreases its frequency of vibration when an eraser is attached, nanomechanical mass sensors work by measuring their change in vibration frequency as mass is added.

The sensitivity of such nanomechanical devices is intimately connected to how much energy they displace. So researchers needed to understand how damping (loss of energy) is transferred both to the fluid surroundings and within the nanostructures. With the lower the damping, the purer the mechanical resonance and higher the sensitivity.

It has not previously been possible to determine the rate at which vibrations in metal nanoparticle systems are damped, because of significant variations in the dimensions of the particles that have been studied – which masks the vibrations.

However, by studying a system of bipyramid-shaped gold nanoparticles with highly uniform sizes and shapes, the researchers overcame this limitation.

“Previous measurements of nanomechanical damping have primarily focused on devices where only one- or two-dimensions are nanoscale, such as long nanowires. Our measurements and calculations provide insight into how energy is dissipated in devices that are truly nanoscale in all three-dimensions,” says Professor Sader.

Illuminating these bipyramidal nanoparticle systems with an ultra-fast laser pulse, set them vibrating mechanically at microwave frequencies. These vibrations were long-lived and for the first time damping in these nanoparticle systems could be interrogated and characterized.

Moreover, the researchers separated out the portion of damping that is due to the material itself and that surrounding liquid for which they developed a parameter-free theoretical model that quantitatively explains this fluid damping.


Story Source:

The above story is based on materials provided by University of Melbourne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pelton et al. Damping of acoustic vibrations in gold nanoparticles. Nature Nanotechnology, 2009; DOI: 10.1038/nnano.2009.192

Cite This Page:

University of Melbourne. "One Nano-step Closer To Weighing A Single Atom." ScienceDaily. ScienceDaily, 14 August 2009. <www.sciencedaily.com/releases/2009/07/090727102135.htm>.
University of Melbourne. (2009, August 14). One Nano-step Closer To Weighing A Single Atom. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/07/090727102135.htm
University of Melbourne. "One Nano-step Closer To Weighing A Single Atom." ScienceDaily. www.sciencedaily.com/releases/2009/07/090727102135.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins