Featured Research

from universities, journals, and other organizations

Rethinking Brownian Motion With The 'Emperor's New Clothes'

Date:
July 28, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
In the classic fairy tale, "The Emperor's New Clothes," Hans Christian Andersen uses the eyes of a child to challenge conventional wisdom and help others to see more clearly. In similar fashion, researchers have now revealed the naked truth about a classic bell-shaped curve used to describe the motion of a liquid as it diffuses through another material.

Steve Granick, Founder Professor of Engineering, has led colleagues in rethinking Brownian motion.
Credit: Photo by L. Brian Stauffer

In the classic fairy tale, "The Emperor's New Clothes," Hans Christian Andersen uses the eyes of a child to challenge conventional wisdom and help others to see more clearly. In similar fashion, researchers at the University of Illinois have now revealed the naked truth about a classic bell-shaped curve used to describe the motion of a liquid as it diffuses through another material.

"The new findings raise fundamental questions concerning the statistical nature of the diffusion process," says Steve Granick, Founder Professor of Engineering, and professor of materials science and engineering, of chemistry, of chemical and biomolecular engineering, and of physics at the U. of I.

Diffusion is critical to processes such as drug delivery, water purification, and the normal operation of living cells. Key to the diffusion process is the manner in which the motion of one molecule affects the motion of another.

"In high school science classes, students are often assigned the task of using a microscope to watch a particle of dust sitting in a drop of water," Granick said. "The dust particle seems alive, moving back and forth, never in the same way. The motion of the dust particle is caused by the random 'kicks' of surrounding water molecules."

Called "Brownian motion" (after botanist Robert Brown, who noticed it in 1828), this phenomenon of fluids was described by Albert Einstein in 1905, when he published his statistical molecular theory of liquids.

According to Einstein, if the motions of many particles were watched, and the distance each moved in a certain time were recorded, the distribution would resemble the familiar Gaussian, bell-shaped curve used to assign grades in a science class.

Einstein had it right – almost.

"Like Einstein, we used to think we could describe Brownian motion with a standard bell-shaped curve," Granick said. "But now, with the ability to measure very small distances much more precisely than was possible 100 years ago, we have found that we can have extremes much farther than previously imagined."

In a paper to be published in the Proceedings of the National Academy of Sciences Online Early Edition next week, the U. of I. researchers show that Einstein's explanation, commonly cited in textbooks, fails in certain important cases.

The experiments were conducted by precisely tracking the motion of 100-nanometer colloidal beads using fluorescence microscopy.

In one series of experiments, the researchers watched as the beads moved up and down tiny tubes of lipid molecules by Brownian motion. In a second series of experiments, the researchers watched as the beads diffused through a porous membrane of entangled macromolecule filaments, again by Brownian motion.

In both sets of experiments, there were many features in full agreement with Einstein and the bell-shaped curve; but there were also features in significant disagreement. In those cases, the beads moved much farther than the common curve could predict. In those extreme displacements, diffusion behavior was not Gaussian, the researchers report. The behavior was exponential.

"These large displacements happen less often, but when they do occur, they are much bigger than we previously thought possible," Granick said.

The new findings "change the rules of the diffusion game," Granick said. "Like the emperor's new clothes, now that we know the bell-shaped curve isn't always the right way to think about a particular problem, process, or operation, we can begin to design around it, and maybe take advantage of it. And, we can correct the textbooks."

Granick is affiliated with the university's Beckman Institute, the department of bioengineering, and the Frederick Seitz Materials Research Laboratory.

With Granick, co-authors of the paper are graduate research assistant and lead author Bo Wang, graduate research assistant Stephen M. Anthony and research scientist Sung Chul Bae.

The U.S. Department of Energy funded the work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Rethinking Brownian Motion With The 'Emperor's New Clothes'." ScienceDaily. ScienceDaily, 28 July 2009. <www.sciencedaily.com/releases/2009/07/090727191300.htm>.
University of Illinois at Urbana-Champaign. (2009, July 28). Rethinking Brownian Motion With The 'Emperor's New Clothes'. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/07/090727191300.htm
University of Illinois at Urbana-Champaign. "Rethinking Brownian Motion With The 'Emperor's New Clothes'." ScienceDaily. www.sciencedaily.com/releases/2009/07/090727191300.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins