Featured Research

from universities, journals, and other organizations

Discovery Brings Hope To Treatment Of Lymphatic Diseases

Date:
August 14, 2009
Source:
University of Kentucky
Summary:
Researchers have discovered the first naturally occurring molecule that selectively blocks lymphatic vessel growth.

A rendering of a flat mount of an sVegfr-2-deficient mouse cornea invaded by lymphatic (green) vessels.
Credit: Photo courtesy of Romulo J.C. Albuquerque & Jayakrishna Ambati

Researchers in the laboratory of Dr. Jayakrishna Ambati at the University of Kentucky have discovered the first naturally occurring molecule that selectively blocks lymphatic vessel growth. In an article in the Aug. 9, 2009 online edition of Nature Medicine, they report the identification of a new molecule known as soluble VEGFR-2 that blocks lymphangiogenesis – the growth of lymphatics – but not blood vessel growth.

Related Articles


The twin circulatory systems of mammals - blood and lymphatic - are intricately intertwined, both anatomically and functionally. Until now it has been difficult to selectively target one without affecting the other. The lymphatic vessel network is essential for transporting fluids, molecules, and immune cells. It is crucial for wound healing and immune defense. Disturbances in the lymphatics are involved in diseases as varied as lymphedema, transplant rejection, and tumor metastasis, which collectively affect hundreds of millions of people worldwide.

This article, whose lead author is Dr. Romulo Albuquerque, currently a medical student in the UK College of Medicine, showed that soluble VEGFR-2 specifically blocks lymphatic vessel growth both during development and following injury by blocking VEGF-C, a powerful lymphatic growth factor. It also reports that loss of soluble VEGFR-2 during development led to the spontaneous invasion of lymphatic vessels, but not blood vessels, into the cornea, solving the long-standing mystery of why the cornea is normally devoid of lymphatics. Soluble VEGFR-2 was also required for normal development of lymphatics in the skin.

Importantly, administration of soluble VEGFR-2 to mice following corneal transplantation nearly eliminated graft rejection. This finding might also be applicable in kidney transplant rejection because it is known that lymphatic vessels are the culprit in the rejection of that organ as well. In addition, it challenges the prevailing dogma that abnormal blood vessels are responsible for transplant rejection.

The Ambati group also studied a childhood tumor known as lymphangioma, which is estimated to affect 1 in 50 babies and for which there is no satisfactory medical treatment. Administration of soluble VEGFR-2 blocked the growth of lymphangioma cells isolated from children with this tumor. Because this molecule spares blood vessels, it might offer a safer and more targeted treatment for this pediatric tumor. The potential benefit of modulating soluble VEGFR-2 in other diseases such lymphedema due to filariasis and or following surgery for breast cancer, as well as in tumor metastasis, are also under study.

“This paper by Dr. Ambati and his coworkers represents another in a line of highly novel and important findings from their laboratory," said Patricia A. D’Amore, Professor of Ophthalmology and Pathology, Harvard Medical School and Senior Scientist at the Schepens Eye Research Institute.

"The report of the first endogenous inhibitor of lymphangiogenesis is an exciting development and holds great therapeutic promise for a number of pathologies in which lymphatic growth is a serious complication.”

This work was supported by research grants from the National Eye Institute of the National Institutes of Health and an unrestricted grant from Research to Prevent Blindness. Ambati is also supported by a Doris Duke Distinguished Clinical Scientist Award and the Burroughs Wellcome Translational Research Clinical Scientist Award.

Researchers in the Ambati lab are recognized leaders in the fight to find a cure for blindness due to age-related macular degeneration and corneal neovascularization. Their previous studies have been published in premier journals such as Nature, Nature Medicine and Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Journal Reference:

  1. Albuquerque et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nature Medicine, 2009; DOI: 10.1038/nm.2018

Cite This Page:

University of Kentucky. "Discovery Brings Hope To Treatment Of Lymphatic Diseases." ScienceDaily. ScienceDaily, 14 August 2009. <www.sciencedaily.com/releases/2009/08/090810122141.htm>.
University of Kentucky. (2009, August 14). Discovery Brings Hope To Treatment Of Lymphatic Diseases. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2009/08/090810122141.htm
University of Kentucky. "Discovery Brings Hope To Treatment Of Lymphatic Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810122141.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins