Featured Research

from universities, journals, and other organizations

Discovery Brings Hope To Treatment Of Lymphatic Diseases

Date:
August 14, 2009
Source:
University of Kentucky
Summary:
Researchers have discovered the first naturally occurring molecule that selectively blocks lymphatic vessel growth.

A rendering of a flat mount of an sVegfr-2-deficient mouse cornea invaded by lymphatic (green) vessels.
Credit: Photo courtesy of Romulo J.C. Albuquerque & Jayakrishna Ambati

Researchers in the laboratory of Dr. Jayakrishna Ambati at the University of Kentucky have discovered the first naturally occurring molecule that selectively blocks lymphatic vessel growth. In an article in the Aug. 9, 2009 online edition of Nature Medicine, they report the identification of a new molecule known as soluble VEGFR-2 that blocks lymphangiogenesis – the growth of lymphatics – but not blood vessel growth.

Related Articles


The twin circulatory systems of mammals - blood and lymphatic - are intricately intertwined, both anatomically and functionally. Until now it has been difficult to selectively target one without affecting the other. The lymphatic vessel network is essential for transporting fluids, molecules, and immune cells. It is crucial for wound healing and immune defense. Disturbances in the lymphatics are involved in diseases as varied as lymphedema, transplant rejection, and tumor metastasis, which collectively affect hundreds of millions of people worldwide.

This article, whose lead author is Dr. Romulo Albuquerque, currently a medical student in the UK College of Medicine, showed that soluble VEGFR-2 specifically blocks lymphatic vessel growth both during development and following injury by blocking VEGF-C, a powerful lymphatic growth factor. It also reports that loss of soluble VEGFR-2 during development led to the spontaneous invasion of lymphatic vessels, but not blood vessels, into the cornea, solving the long-standing mystery of why the cornea is normally devoid of lymphatics. Soluble VEGFR-2 was also required for normal development of lymphatics in the skin.

Importantly, administration of soluble VEGFR-2 to mice following corneal transplantation nearly eliminated graft rejection. This finding might also be applicable in kidney transplant rejection because it is known that lymphatic vessels are the culprit in the rejection of that organ as well. In addition, it challenges the prevailing dogma that abnormal blood vessels are responsible for transplant rejection.

The Ambati group also studied a childhood tumor known as lymphangioma, which is estimated to affect 1 in 50 babies and for which there is no satisfactory medical treatment. Administration of soluble VEGFR-2 blocked the growth of lymphangioma cells isolated from children with this tumor. Because this molecule spares blood vessels, it might offer a safer and more targeted treatment for this pediatric tumor. The potential benefit of modulating soluble VEGFR-2 in other diseases such lymphedema due to filariasis and or following surgery for breast cancer, as well as in tumor metastasis, are also under study.

“This paper by Dr. Ambati and his coworkers represents another in a line of highly novel and important findings from their laboratory," said Patricia A. D’Amore, Professor of Ophthalmology and Pathology, Harvard Medical School and Senior Scientist at the Schepens Eye Research Institute.

"The report of the first endogenous inhibitor of lymphangiogenesis is an exciting development and holds great therapeutic promise for a number of pathologies in which lymphatic growth is a serious complication.”

This work was supported by research grants from the National Eye Institute of the National Institutes of Health and an unrestricted grant from Research to Prevent Blindness. Ambati is also supported by a Doris Duke Distinguished Clinical Scientist Award and the Burroughs Wellcome Translational Research Clinical Scientist Award.

Researchers in the Ambati lab are recognized leaders in the fight to find a cure for blindness due to age-related macular degeneration and corneal neovascularization. Their previous studies have been published in premier journals such as Nature, Nature Medicine and Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by University of Kentucky. Note: Materials may be edited for content and length.


Journal Reference:

  1. Albuquerque et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nature Medicine, 2009; DOI: 10.1038/nm.2018

Cite This Page:

University of Kentucky. "Discovery Brings Hope To Treatment Of Lymphatic Diseases." ScienceDaily. ScienceDaily, 14 August 2009. <www.sciencedaily.com/releases/2009/08/090810122141.htm>.
University of Kentucky. (2009, August 14). Discovery Brings Hope To Treatment Of Lymphatic Diseases. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/08/090810122141.htm
University of Kentucky. "Discovery Brings Hope To Treatment Of Lymphatic Diseases." ScienceDaily. www.sciencedaily.com/releases/2009/08/090810122141.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins