Featured Research

from universities, journals, and other organizations

Biologists ID Molecular Basis Of High-altitude Adaptation In Mice

Date:
August 15, 2009
Source:
University of Nebraska-Lincoln
Summary:
A group of scientists have discovered the specific mutations involved in evolutionary adaptation to different environments.

Deer mouse.
Credit: Image courtesy of University of Nebraska-Lincoln

Biologists have long known how adaptive evolution works. New mutations arise within a population and those that confer some benefits to the organism increase in frequency and eventually become fixed in the population.

A significant challenge for evolutionary biologists, however, has been to identify the specific mutations that are responsible for adaptive change. But new research by an international team led by Jay Storz of the University of Nebraska-Lincoln has succeeded in identifying the specific gene mutations that have allowed deer mice to migrate from grasslands at relatively low elevations to low-oxygen alpine peaks.

In a paper published in the Aug. 10-14 online edition of the Proceedings of the National Academy of Sciences, Storz and his team describe findings from a population genetic analysis of 75 wild deer mice captured in Colorado -- 38 at about 3,300 feet above sea level in Yuma County near the Kansas border and 37 at the peak of 14,345-foot Mount Evans in Clear Creek County.

Animals in high-altitude, low-oxygen environments such as those at the top of Mount Evans are subject to hypoxia, a condition that results when arterial blood does not carry a sufficient supply of oxygen to bodily tissues. Among the high-altitude mice, however, Storz and his team found mutations in four different hemoglobin genes that enable the animals to tolerate chronic hypoxia.

The mutations found in high-altitude mice increase the oxygen-binding affinity of hemoglobin, which in turn augments the concentration of oxygen in the arterial bloodstream. The mutations were absent in the low-altitude mice.

"The significance of this work is that we have identified the specific mutations involved in evolutionary adaptation to different environments," Storz said. "One of the challenges of living in a low-oxygen environment is that the arterial blood does not carry a sufficient amount of oxygen to all the cells of the body. For animals living in these low-oxygen conditions, it's often advantageous to have hemoglobin with an especially high oxygen-binding affinity. These fine-tuned adjustments in hemoglobin function provide a decisive physiological advantage to animals living in such an extreme environment.

"By using biotechnology methods, we were able to pinpoint the specific mutations that enable the high-altitude mice to tolerate chronic hypoxia. These findings provide important insights into the process of Darwinian evolution at the molecular level."

An assistant professor of biological sciences at UNL since 2005, Storz said the mutations had to have occurred in a relatively short period of time, the 10,000 years since the end of the last glacial maximum since the mice could not have colonized the alpine areas until after Ice Age conditions retreated.

He also said the hemoglobins of high-altitude deer mice are functionally similar to the fetal hemoglobins of humans. Thus, evolution has fashioned similar solutions to the physiological challenges associated with life at high altitude and those associated with pre-natal development in the hypoxic intrauterine environment.

Storz's co-authors are Amy Runck, postdoctoral researcher at UNL; Stephen Sabatino, doctoral student at Stony Brook University in New York and former technician in the UNL School of Biological Sciences; John Kelly, associate professor of ecology and evolutionary biology at the University of Kansas; Nuno Ferrand of the University of Porto in Portugal; Hideaki Moriyama, associate professor of biological sciences at UNL; and Roy Weber and Angela Fago of the University of Aarhus in Denmark.

The research was supported by grants from the National Institutes of Health and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Nebraska-Lincoln. Note: Materials may be edited for content and length.


Cite This Page:

University of Nebraska-Lincoln. "Biologists ID Molecular Basis Of High-altitude Adaptation In Mice." ScienceDaily. ScienceDaily, 15 August 2009. <www.sciencedaily.com/releases/2009/08/090811091830.htm>.
University of Nebraska-Lincoln. (2009, August 15). Biologists ID Molecular Basis Of High-altitude Adaptation In Mice. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/08/090811091830.htm
University of Nebraska-Lincoln. "Biologists ID Molecular Basis Of High-altitude Adaptation In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/08/090811091830.htm (accessed April 24, 2014).

Share This



More Plants & Animals News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
Raw: Kangaroo Rescued from Swimming Pool

Raw: Kangaroo Rescued from Swimming Pool

AP (Apr. 24, 2014) A kangaroo was saved from drowning in a backyard suburban swimming pool in Australia's Victoria state on Thursday. Australian broadcaster Channel 7 showed footage of the kangaroo struggling to get out of the pool. (April 24) Video provided by AP
Powered by NewsLook.com
Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins