Featured Research

from universities, journals, and other organizations

Camera Flash Turns An Insulating Material Into A Conductor

Date:
August 14, 2009
Source:
Northwestern University
Summary:
An insulator can now be transformed to conduct electricity by an ordinary camera flash. Researchers have found a new way of turning graphite oxide -- a low-cost insulator made by oxidizing graphite powder -- into graphene, a hotly studied material that conducts electricity. Scientists believe graphene could be used to produce low-cost carbon-based transparent and flexible electronics.

An insulator can now be transformed to conduct electricity by an ordinary camera flash.

Related Articles


A Northwestern University professor and his students have found a new way of turning graphite oxide -- a low-cost insulator made by oxidizing graphite powder -- into graphene, a hotly studied material that conducts electricity. Scientists believe graphene could be used to produce low-cost carbon-based transparent and flexible electronics.

Previous processes to reduce graphite oxide relied on toxic chemicals or high-temperature treatment. The idea for a simple new process came in a burst of inspiration: Can a camera flash instantly heat up the graphite oxide and turn it into graphene?

The process, invented by Jiaxing Huang, assistant professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science, and his graduate student Laura J. Cote and postdoctoral fellow Rodolfo Cruz-Silva, was published in the Aug. 12 issue of the Journal of the American Chemical Society.

Materials scientists previously have used high-temperature heating or chemical reduction to produce graphene from graphite oxide. But these techniques could be problematic when graphite oxide is mixed with something else, such as a polymer, because the polymer component may not survive the high-temperature treatment or could block the reducing chemical from reacting with graphite oxide.

In Huang's flash reduction process, researchers simply hold a consumer camera flash over the graphite oxide and, a flash later, the material is now a piece of fluffy graphene.

"The light pulse offers very efficient heating through the photothermal process, which is rapid, energy efficient and chemical-free," he says.

When using a light pulse, photothermal heating not only reduces the graphite oxide, it also fuses the insulating polymer with the graphene sheets, resulting in a welded conducting composite.

Using patterns printed on a simple overhead transparency film as a photo-mask, flash reduction creates patterned graphene films. This process creates electronically conducting patterns on the insulating graphite oxide film -- essentially a flexible circuit.

The research group hopes to next create smaller circuits on a single graphite-oxide sheet at the single-atom layer level. (The current process has been performed only on thicker films.)

"If we can make a nano circuit on a single piece of graphite oxide," Huang says, "it will hold great promise for patterning electronic devices."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Camera Flash Turns An Insulating Material Into A Conductor." ScienceDaily. ScienceDaily, 14 August 2009. <www.sciencedaily.com/releases/2009/08/090812163748.htm>.
Northwestern University. (2009, August 14). Camera Flash Turns An Insulating Material Into A Conductor. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2009/08/090812163748.htm
Northwestern University. "Camera Flash Turns An Insulating Material Into A Conductor." ScienceDaily. www.sciencedaily.com/releases/2009/08/090812163748.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins