Featured Research

from universities, journals, and other organizations

New Chemical Synthesis Could Streamline Drug Design

Date:
August 16, 2009
Source:
Massachusetts Institute of Technology
Summary:
A team of chemists has devised a new way to add fluorine to a variety of compounds used in many drugs and agricultural chemicals, an advance that could offer more flexibility and potential cost-savings in designing new drugs.

A team of MIT chemists has devised a new way to add fluorine to a variety of compounds used in many drugs and agricultural chemicals, an advance that could offer more flexibility and potential cost-savings in designing new drugs.

Related Articles


Drug developers commonly add fluorine atoms to drugs, such as the cholesterol-lowering rosuvastatin, to keep the body from breaking them down too quickly. Many of these drugs contain aromatic rings — a type of six-carbon ring — and attaching a fluorine atom to the rings can be a difficult, expensive process.

"It's hard to add fluorine at a late stage, once you have a complete molecule already put together, because traditional methods can be quite harsh with respect to temperature or other factors," says Stephen L. Buchwald, the Camille Dreyfus Professor of Chemistry at MIT.

In their new technique, Buchwald and his colleagues used a palladium catalyst to attach a fluorine atom to aromatic compounds. The technique could be used in the design and testing of new drugs, or to create new imaging agents for positron emission tomography (PET) scanning.

Donald Watson, a former postdoctoral associate in Buchwald's lab, now an assistant professor of chemistry at the University of Delaware, is lead author of a paper describing the new synthesis in the Aug. 13 early online edition of Science.

During the new process, the palladium catalyst removes a group of atoms called a triflate attached to the aromatic compound, then replaces it with a fluorine atom taken from a simple salt, such as cesium fluoride. This marks the first time chemists have replaced a triflate attached to an aromatic ring with a fluorine atom in one catalytic reaction.

"Many people believed it would not be possible to do this," says Buchwald.

"While the method is probably not currently efficient enough to be used in manufacturing, we are working to speed up the reaction, increase its efficiency and make it more environmentally and user-friendly," says Buchwald. "We ultimately hope to make it general enough to be useful for manufacturing."

The research was funded by the National Institutes of Health. Other authors of the paper are visiting student Mingjuan Su and chemistry graduate student Georgiy Teverovskiy, and postdoctoral fellows Yong Zhang, Jorgι Garcνa-Fortanet


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "New Chemical Synthesis Could Streamline Drug Design." ScienceDaily. ScienceDaily, 16 August 2009. <www.sciencedaily.com/releases/2009/08/090813142140.htm>.
Massachusetts Institute of Technology. (2009, August 16). New Chemical Synthesis Could Streamline Drug Design. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2009/08/090813142140.htm
Massachusetts Institute of Technology. "New Chemical Synthesis Could Streamline Drug Design." ScienceDaily. www.sciencedaily.com/releases/2009/08/090813142140.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) — Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) — The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins