Featured Research

from universities, journals, and other organizations

Self-assembled DNA Scaffolding Used To Build Tiny Circuit Boards

Date:
August 20, 2009
Source:
California Institute of Technology
Summary:
Scientists have developed a new technique to orient and position self-assembled DNA shapes and patterns -- or "DNA origami" -- on surfaces that are compatible with today's semiconductor manufacturing equipment. These precisely positioned DNA nanostructures, each no more than one one-thousandth the width of a human hair, can serve as scaffolds or miniature circuit boards for the precise assembly of computer-chip components.

Scientists are using DNA origami to build tiny circuit boards; in this image, low concentrations of triangular DNA origami are binding to wide lines on a lithographically patterned surface.
Credit: IBM

Scientists at the California Institute of Technology (Caltech) and IBM's Almaden Research Center have developed a new technique to orient and position self-assembled DNA shapes and patterns—or "DNA origami"—on surfaces that are compatible with today's semiconductor manufacturing equipment. These precisely positioned DNA nanostructures, each no more than one one-thousandth the width of a human hair, can serve as scaffolds or miniature circuit boards for the precise assembly of computer-chip components.

The advance, described in the current issue of the journal Nature Nanotechnology, could allow the semiconductor industry to pack more power and speed into tiny computer chips, while making them more energy efficient and less expensive to manufacture than is possible today.

DNA origami structures have been heralded as a potential breakthrough for the creation of nanoscale circuits and devices. In a process created by Caltech senior research associate Paul W. K. Rothemund and his colleagues, DNA molecules self-assemble in solution via a reaction between a long single strand of viral DNA and a mixture of different short synthetic DNA strands. These short segments act as staples that effectively fold the viral DNA into desired two-dimensional shapes through complementary base-pair binding.

In this way, DNA nanostructures such as squares, triangles, and stars can be prepared that measure 100 to 150 nanometers on an edge and are as thick as the DNA double helix is wide.

One roadblock to the use of DNA origami, however, is that the structures are made in saltwater solution—whereas electronic circuits are created on surfaces, like a silicon wafer, so they can be integrated with other technologies.

DNA origami structures also adhere randomly to surfaces, which means that "if you just pour DNA origami over a surface to which they stick, they attach everywhere," explains Rothemund, who jointly led the project with IBM. "It's a little like taking a deck of playing cards and throwing it on the floor; they are scattered willy-nilly all over the place. Such random arrangements of DNA origami are not very useful. If they carry electronic circuits, for example, they are difficult to find and wire up into larger circuits."

To eliminate these problems, Rothemund and his colleagues at the Almaden Research Center developed a way to precisely position DNA origami nanostructures on a surface, "to line them up like little ducks in a row," Rothemund says. "This knocks down one of the major roadblocks for the use of DNA origami in technology," he adds.

In a process developed by IBM scientists, electron-beam lithography and oxygen plasma etching, conventional semiconductor techniques, are used to make patterns on silicon wafers, creating lithographic templates of the proper size and shape to match those of individual triangular DNA origami structures created by Rothemund. The etched patches are negatively charged, as are DNA origami structures, and are therefore "sticky."

To connect the origami to the templates, magnesium ions are added to the saltwater solution containing the origami. The positively charged magnesium ions can stick to both the DNA origami and the negatively charged patches on the template. Thus, when the solution is poured over the template, a negative–positive–negative "sandwich" is formed, with the magnesium atoms acting as a glue to hold the origami to the sticky patches.

"The triangles bind strongly to the sticky patches, but also they can wiggle a bit, so they line up with the outline of the sticky patch. So not only can we put origami where we want them, but they can be oriented in the direction we want them," Rothemund says.

The positioned DNA nanostructures can then serve as scaffolds or miniature circuit boards for the precise assembly of components such as carbon nanotubes, nanowires, and nanoparticles at dimensions significantly smaller than possible with conventional semiconductor fabrication techniques. This opens up the possibility of creating functional devices that can be integrated into larger structures as well as enabling studies of arrays of nanostructures with known coordinates.

"The spacing between the components can be 6 nanometers, so the resolution of the process is roughly 10 times higher than the process we currently use to make computer chips," Rothemund says. "Then, if you want to design a really small electronic device, say, you just design DNA strands to create the pattern you want, attach little chemical 'fastening posts' to those DNA strands, assemble the pattern, and then assemble the components onto the pattern," he explains.

The process isn't limited to organizing things that are of interest to physical scientists and engineers, like electronic components, Rothemund adds. For example, he says, "Biologists studying how proteins interact can place them in patterns on top of DNA origami. This may be useful in the case of motor proteins, the little machines that power our muscles. They work in gangs, with multiple motors pulling together. To study how different configurations of motors cooperate, scientists may use DNA origami to organize the gangs."

"Rothemund and his colleagues have removed a key barrier to the improvement and advancement of computer chips. They accomplished this through the revolutionary approach of combining the building blocks for life with the building blocks for computing," says Ares Rosakis, Theodore von Kármán Professor of Aeronautics and Mechanical Engineering and chair of Caltech's Division of Engineering and Applied Science.

This work was supported by the National Science Foundation and the Focus Center Research Program.


Story Source:

The above story is based on materials provided by California Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kershner et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology, 2009; DOI: 10.1038/nnano.2009.220

Cite This Page:

California Institute of Technology. "Self-assembled DNA Scaffolding Used To Build Tiny Circuit Boards." ScienceDaily. ScienceDaily, 20 August 2009. <www.sciencedaily.com/releases/2009/08/090818130626.htm>.
California Institute of Technology. (2009, August 20). Self-assembled DNA Scaffolding Used To Build Tiny Circuit Boards. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2009/08/090818130626.htm
California Institute of Technology. "Self-assembled DNA Scaffolding Used To Build Tiny Circuit Boards." ScienceDaily. www.sciencedaily.com/releases/2009/08/090818130626.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins