Featured Research

from universities, journals, and other organizations

Key Factor That Stimulates Brain Cancer Cells To Spread Identified

Date:
August 20, 2009
Source:
NIH/National Institute of Neurological Disorders and Stroke
Summary:
Researchers have found that the activity of a protein in brain cells helps stimulate the spread of an aggressive brain cancer called glioblastoma multiforme (GBM). In a move toward therapy, the researchers showed that a small designer protein can block this activity and reduce the spreading of GBM cells grown in the laboratory.

Researchers funded by the National Institutes of Health have found that the activity of a protein in brain cells helps stimulate the spread of an aggressive brain cancer called glioblastoma multiforme (GBM). In a move toward therapy, the researchers showed that a small designer protein can block this activity and reduce the spreading of GBM cells grown in the laboratory.

GBM is the most lethal form of brain cancer, with about half of patients expected to die within a year of diagnosis. GBM is named for the fact that the cancerous cells have properties of support cells in the brain called glial cells. Rather than simply growing in a single tumor mass, GBM cells tend to migrate throughout the brain, making it difficult to remove them surgically. As the cells spread and multiply, they also tend to become resistant to radiation and chemotherapy.

"Interventions to control the spreading of glioblastoma multiforme have the potential to slow the clinical course of the disease and improve overall survival rates," says Jane Fountain, Ph.D., a program director at NIH's National Institute of Neurological Disorders and Stroke (NINDS). NINDS funded the new study through an initiative that encourages research on why brain tumor cells are so highly invasive and how to therapeutically target these cells.

The study's senior author is Susann Brady-Kalnay, Ph.D., a neuroscientist at Case Western Reserve University in Cleveland and an expert on the development of the retina. For years, she has studied how cells migrate to their proper places in the developing retina. In particular, she studied how this process is regulated by cell adhesion molecules – proteins at a cell's surface that can keep the cell stuck to its surroundings, or help the cell move. She has shown that a cell adhesion molecule called PTPmu is required for retinal cell migration. Investigating the role of PTPmu in GBM dispersal was a logical extension, she says.

"We know that cell adhesion is important for development, and that there are many parallels between what happens during development and what happens in cancer," says Dr. Brady-Kalnay. For instance, she notes there is some evidence that cancer cells have turned back the developmental clock and reverted to an embryonic stem cell-like state.

In their new study published in Cancer Research, Dr. Brady-Kalnay and her team report that in GBM cancer cells, the PTPmu protein is cut into fragments, a process known as proteolysis. One might expect that the loss of intact PTPmu would simply cause the cells to detach from their surroundings. However, the fragments also appear to act as signals that stimulate the cells to move and to thrive outside of their normal surroundings.

The researchers found the PTPmu fragments in GBM tumors that had been surgically removed from patients and in GBM cells grown in the laboratory. Next, they examined how these fragments affected the migration of GBM cells in a petri dish. They observed that adding more of the intact protein to the cells or treating the cells with a chemical inhibitor of proteolysis reduced the cells' ability to migrate.

Finally, they showed that it is possible to suppress the effect of the fragments, even without restoring the intact PTPmu protein. This last experiment built upon a collaboration between Dr. Brady-Kalnay and Frank Longo, M.D., chair of the neurology department at Stanford University School of Medicine. The two researchers had previously designed a very small protein, or peptide, capable of attaching to PTPmu and blocking its effects on retinal cell migration. Here, Dr. Brady-Kalnay and her team tested this peptide in GBM cells, and found that it blocked their ability to migrate, too.

The peptide cannot currently be used to treat GBM, because it would be broken down rapidly if it was injected directly into the body. The researchers hope to develop injectable compounds that mimic the peptide, and to test those compounds in animal models of GBM.

The study's first author was Adam Burgoyne, a graduate student in the Department of Molecular Biology and Microbiology at Case Western. Case Western faculty who contributed to the study included neurosurgeons Shenandoah Robinson, M.D. and Andrew E. Sloan, M.D., and Robert H Miller, Ph.D., an expert on glial cell development.

The study received additional funding from NIH's National Cancer Institute, National Eye Institute, and National Institute of General Medical Sciences, and from the Ivy Brain Tumor Foundation.


Story Source:

The above story is based on materials provided by NIH/National Institute of Neurological Disorders and Stroke. Note: Materials may be edited for content and length.


Journal Reference:

  1. Burgoyne AM, Phillips-Mason PJ, Burden-Gulley SM, Robinson S, Sloan AE, Miller RH, Brady-Kalnay SM. Proteolytic Cleavage of PTPmu Regulates Glioblastoma Cell Migration. Cancer Research, Published online August 18, 2009

Cite This Page:

NIH/National Institute of Neurological Disorders and Stroke. "Key Factor That Stimulates Brain Cancer Cells To Spread Identified." ScienceDaily. ScienceDaily, 20 August 2009. <www.sciencedaily.com/releases/2009/08/090818150025.htm>.
NIH/National Institute of Neurological Disorders and Stroke. (2009, August 20). Key Factor That Stimulates Brain Cancer Cells To Spread Identified. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2009/08/090818150025.htm
NIH/National Institute of Neurological Disorders and Stroke. "Key Factor That Stimulates Brain Cancer Cells To Spread Identified." ScienceDaily. www.sciencedaily.com/releases/2009/08/090818150025.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins