Featured Research

from universities, journals, and other organizations

Flying By The Skin Of Our Teeth

Date:
September 6, 2009
Source:
Tel Aviv University
Summary:
A new study looks at the highly sophisticated structure of teeth and how this structure could be applied to aircraft and space vehicles of the future.

It's been a mystery: how can our teeth withstand such an enormous amount of pressure, over many years, when tooth enamel is only about as strong as glass?
Credit: Courtesy of Wikimedia Commons

It's been a mystery: how can our teeth withstand such an enormous amount of pressure, over many years, when tooth enamel is only about as strong as glass? A new study by Prof. Herzl Chai of Tel Aviv University's School of Mechanical Engineering and his colleagues at the National Institute of Standards and Technology and George Washington University gives the answer.

Related Articles


The researchers applied varying degrees of mechanical pressure to hundreds of extracted teeth, and studied what occurred on the surface and deep inside them. The study, published in the May 5, 2009, issue of the Proceedings of the National Academy of Science, shows that it is the highly-sophisticated structure of our teeth that keeps them in one piece — and that structure holds promising clues for aerospace engineers as they build the aircraft and space vehicles of the future.

"Teeth are made from an extremely sophisticated composite material which reacts in an extraordinary way under pressure," says Prof. Chai. "Teeth exhibit graded mechanical properties and a cathedral-like geometry, and over time they develop a network of micro-cracks which help diffuse stress. This, and the tooth's built-in ability to heal the micro-cracks over time, prevents it from fracturing into large pieces when we eat hard food, like nuts."

News the aviation industry can bite into

The automotive and aviation industries already use sophisticated materials to prevent break-up on impact. For example, airplane bodies are made from composite materials — layers of glass or carbon fibers — held together by a brittle matrix.

In teeth, though, fibers aren't arranged in a grid, but are "wavy" in structure. There are hierarchies of fibers and matrices arranged in several layers, unlike the single-thickness layers used in aircrafts. Under mechanical pressure, this architecture presents no clear path for the release of stress. Therefore, "tufts" — built-in micro cracks — absorb pressure in unison to prevent splits and major fractures. As Prof. Chai puts it, tooth fractures "have a hard time deciding which way to go," making the tooth more resistant to cracking apart. Harnessing this property could lead to a new generation of much stronger composites for planes.

Prof. Chai, himself an aerospace engineer, suggests that if engineers can incorporate tooth enamel's wavy hierarchy, micro-cracking mechanism, and capacity to heal, lighter and stronger aircraft and space vehicles can be developed. And while creating a self-healing airplane is far in the future, this significant research on the composite structure of teeth can already begin to inspire aerospace engineers — and, of course, dentists.

Creating a super-smile

Dental specialists looking for new ways to engineer that picture-perfect Hollywood smile can use Dr. Chai's basic research to help invent stronger crowns, better able to withstand oral wear-and-tear. "They can create smart materials that mimic the properties found in real teeth," he says.

In natural teeth, there may not be any way to speed up the self-healing ability of tooth enamel, which the Tel Aviv University research found is accomplished by a glue-like substance that fills in micro-cracks over time. But fluoride treatments and healthy brushing habits can help to fill in the tiny cracks and keep teeth strong.


Story Source:

The above story is based on materials provided by Tel Aviv University. Note: Materials may be edited for content and length.


Cite This Page:

Tel Aviv University. "Flying By The Skin Of Our Teeth." ScienceDaily. ScienceDaily, 6 September 2009. <www.sciencedaily.com/releases/2009/08/090819164319.htm>.
Tel Aviv University. (2009, September 6). Flying By The Skin Of Our Teeth. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/08/090819164319.htm
Tel Aviv University. "Flying By The Skin Of Our Teeth." ScienceDaily. www.sciencedaily.com/releases/2009/08/090819164319.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins