Featured Research

from universities, journals, and other organizations

Neural Nanoblockers Pinpointed In Carbon Nanotubes

Date:
September 1, 2009
Source:
Brown University
Summary:
Scientists have pinpointed why carbon nanotubes tend to block a critical signaling pathway in neurons. It's not the tubes, the researchers find, but the metal catalysts used to form the tubes. The discovery means carbon nanotubes without metal catalysts may be useful in treating human neurological disorders.

Neural Nanoblocker. Metal catalysts — nickel and particularly yttrium — used to create carbon nanotubes can block a key signaling pathway in neurons. Experiments show the metal particles tend to plug cellular pores normally reserved for calcium ions.
Credit: Lorin Jakubek / Brown University

A team of Brown University scientists has pinpointed why carbon nanotubes tend to block a critical signaling pathway in neurons. It’s not the tubes, the team finds, but the metal catalysts used to form the tubes. The discovery means carbon nanotubes without metal catalysts may be useful in treating human neurological disorders. Results appear in Biomaterials.

Related Articles


Carbon nanotubes hold many exciting possibilities, some of them in the realm of the human nervous system. Recent research has shown that carbon nanotubes may help regrow nerve tissue or ferry drugs used to repair damaged neurons associated with disorders such as epilepsy, Parkinson’s disease and perhaps even paralysis.

Yet some studies have shown that carbon nanotubes appear to interfere with a critical signaling transaction in neurons, throwing doubt on the tubes’ value in treating neurological disorders. No one knew why the tubes were causing a problem.

Now a team of Brown University researchers has found that it’s not the tubes that are to blame. Writing in the journal Biomaterials, the scientists report that the metal catalysts used to form the tubes are the culprits, and that minute amounts of one metal — yttrium — could impede neuronal activity. The findings mean that carbon nanotubes without metal catalysts may be able to treat human neurological disorders, although other possible biological effects still need to be studied.

“We can purify the nanotubes by removing the metals,” said Lorin Jakubek, a Ph.D. candidate in biomedical engineering and lead author of the paper, “so, it's a problem we can fix.”

Jakubek took single-walled carbon nanotubes to the laboratory of Diane Lipscombe, a Brown neuroscientist. The researchers zeroed in on ion channels located at the end of neurons’ axons. These channels are gateways of sorts, driven by changes in the voltage across neurons’ membranes. When an electrical signal, known as an action potential, is triggered in neurons, these ion channels “open,” each designed to take in a certain ion. One such ion channel passes only calcium, a protein that is critical for transmitter release and thus for neurons to communicate with each other.

In experiments using cloned calcium ion channels in embryonic kidney cells, the scientists discovered that nickel and yttrium, two metal catalysts used to form the single-walled carbon nanotubes, were interfering with the ion channel’s ability to absorb the calcium.

Because its ionic radius is nearly identical to calcium’s, yttrium in particular “gets stuck and prevents calcium from entering and passing through. It’s an ion pore blocker,” said Lipscombe, who specializes in neuronal ion channels and is a corresponding author on the paper.

The experiments showed that yttrium in trace amounts — less than 1 microgram per milliliter of water — may disrupt normal calcium signaling in neurons and other electrically active cells, an amount far lower than what had been thought to be safe levels. With nickel, the amount needed to impede calcium signaling was 300 times higher.

“Yttrium is so potent that ... a very low nanotube dose” would be needed to affect neuronal activity, said Robert Hurt, professor of engineering and a corresponding author on the paper.

Jakubek said she was surprised that the metals turned out to be the cause. “Based on the literature, I thought it would be the nanotubes themselves,” she said.

Spiro Marangoudakis, Jessica Raingo and Xinyuan Liu contributed to the paper. The National Institutes of Health, the National Science Foundation and the U.S. Environmental Protection Agency funded the research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Neural Nanoblockers Pinpointed In Carbon Nanotubes." ScienceDaily. ScienceDaily, 1 September 2009. <www.sciencedaily.com/releases/2009/08/090827141413.htm>.
Brown University. (2009, September 1). Neural Nanoblockers Pinpointed In Carbon Nanotubes. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2009/08/090827141413.htm
Brown University. "Neural Nanoblockers Pinpointed In Carbon Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2009/08/090827141413.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins