Featured Research

from universities, journals, and other organizations

Inflammatory Disease Treatments To Improve Through Use Of Lipidomics

Date:
September 5, 2009
Source:
University of Missouri-Columbia
Summary:
According to the National Center for Chronic Disease Prevention and Health Promotion, 46 million Americans have arthritis. Many of these people take over-the-counter anti-inflammatory medications that block production of certain molecules, known as bioactive lipids, to reduce pain and swelling. Yet, the role of these lipids is not yet understood completely, and medications may have adverse side effects. Recently, researchers completed the first comprehensive analysis of bioactive lipids in an inflammatory response.

According to the National Center for Chronic Disease Prevention and Health Promotion, 46 million Americans have arthritis. Many of these people take over-the-counter anti-inflammatory medications that block production of certain molecules, known as bioactive lipids, to reduce pain and swelling. Yet, the role of these lipids is not yet understood completely, and medications may have adverse side effects.

Recently, University of Missouri researchers completed the first comprehensive analysis of bioactive lipids in an inflammatory response triggered by the Lyme disease agent, Borrelia burgdorferi. This analysis could shed light on the role bioactive lipids play in inflammatory diseases.

"Many diseases, such as arthritis, cardiovascular disease and diabetes are associated with chronic inflammation," said Charles Brown, associate professor of veterinary pathobiology in the MU College of Veterinary Medicine. "The first step in finding an effective treatment is to understand the basics of an inflammatory response, including the role of bioactive lipids. Understanding how bioactive lipids regulate the disease processes will lead to the development of drugs that have more specific targets and less adverse side effects."

In the study, researchers investigated the role of certain bioactive lipids in mice infected with Borrelia burgdorferi, the bacteria responsible for Lyme disease. Eicosanoids, which are bioactive lipids that play an important role in inflammatory disease, were extracted from mice that displayed symptoms of Lyme arthritis and from mice who showed no symptoms. The researchers found differences in the amounts of specific eicosanoids in the samples, which correlated with the severity of arthritis in the mice.

"The process of inflammation is not a passive event, but instead is a coordinated, orderly process actively signaled by specific protein and lipid molecules," Brown said. "Previous studies investigating eicosanoids have focused on singular pathways or phases of the inflammatory response. These studies provided an incomplete picture and gave the impression that some bioactive lipids function in isolation. In our study, we were able to measure virtually all of the known eicosanoids at the same time and examine a more complete picture of the inflammatory response."

The findings from this study also could translate into a diagnostic tool for assessing individual patients, assist with the development of more disease-specific therapies, and facilitate the progress of individualized medicine, resulting in more effective treatments for inflammatory diseases with fewer side effects.

Lyme arthritis occurs in 60 to 80 percent of individuals not treated with antibiotics at the time of their infection, and patients are typically given anti-inflammatory drugs to treat their pain and swelling. Arthritis in mice caused by Lyme disease is a good model for how bioactive lipids regulate the process of inflammation, because researchers can observe the process from start to finish, Brown said.

The study, "Lipidomic Analysis of Dynamic Eicosaniod Responses During the Induction and Resolution of Lyme Arthritis," was published in the June issue of The Journal of Biological Chemistry. It was co-authored by Brown; Victoria Blaho, post doctoral researcher in the MU College of Veterinary Medicine; Matthew Buczynski, researcher at the University of California; and Edward Dennis, researcher at the University of California.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of Missouri-Columbia. "Inflammatory Disease Treatments To Improve Through Use Of Lipidomics." ScienceDaily. ScienceDaily, 5 September 2009. <www.sciencedaily.com/releases/2009/09/090901163928.htm>.
University of Missouri-Columbia. (2009, September 5). Inflammatory Disease Treatments To Improve Through Use Of Lipidomics. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/09/090901163928.htm
University of Missouri-Columbia. "Inflammatory Disease Treatments To Improve Through Use Of Lipidomics." ScienceDaily. www.sciencedaily.com/releases/2009/09/090901163928.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins