Featured Research

from universities, journals, and other organizations

Transplanted Human Stem Cells Prolong Survival In Mouse Model Of Rare Brain Disease

Date:
September 4, 2009
Source:
Cell Press
Summary:
A new study finds substantial improvement in a mouse model of a rare, hereditary neurodegenerative disease after transplantation of normal human neural stem cells. The research findings show that the transplanted cells provided a critical enzyme that was missing in the brains of the experimental mice and represent an important step toward what may be a successful therapeutic approach for a currently untreatable and devastating disease.

A new study finds substantial improvement in a mouse model of a rare, hereditary neurodegenerative disease after transplantation of normal human neural stem cells. The research findings, published by Cell Press in the September 4th issue of the journal Cell Stem Cell, show that the transplanted cells provided a critical enzyme that was missing in the brains of the experimental mice and represent an important step toward what may be a successful therapeutic approach for a currently untreatable and devastating disease.

Related Articles


Infantile neuronal ceroid lipofuscinosis (INCL), commonly known as Batten disease, is a fatal neurodegenerative disease in children. It is caused by a mutation in the gene that makes a crucial enzyme called palmitoyl protein thioesterase-1 (PPT1). A deficiency of PPT1 in the brain causes the abnormal accumulation of a cellular lipid storage material called lipofuscin, which leads to neuron death, a decline in cognitive and motor skills, visual impairment, seizures and premature death. Unfortunately, intravenous enzyme replacement therapy is not a viable treatment approach as it is nearly impossible to get the PPT1 enzyme into the brain.

Although there is currently no effective treatment for INCL, it has been hypothesized that transplanted donor cells might be able to secrete the needed enzyme directly into the host brain. A mouse model of INCL that mimics many aspects of the human disease has been developed and provides an excellent experimental model for testing whether a human neural stem cell transplant may be a beneficial disease treatment. Dr. Nobuko Uchida from StemCells, Inc., in Palo Alto, California led a study that tested this hypothesis with banked human neural stem cells that had been purified, expanded, and preserved.

"We took a novel approach and transplanted normal, nontumorigenic, and nongenetically modified human neural stem cells to deliver the deficient enzyme in the mouse model of INCL," explains Dr. Uchida. "We transplanted self-renewing human neural stem cells because, theoretically, these transplants can provide life-long production of the missing enzyme." Dr. Uchida and colleagues found that the purified human neural stem cells engrafted to the brain of INCL mice, migrated extensively, and produced enough PPT1 in the host mice to elicit significant improvement. Specifically, the INCL mice exhibited reduced lipofuscin, widespread neuroprotection, and a delayed loss of motor coordination.

"Early intervention with neural stem cell transplants into the brains of INCL patients may supply a continuous and long-lasting source of the missing PPT1 and provide some therapeutic benefit through protection of endogenous neurons," concludes Dr. Uchida. "These data support our rationale for continued development in humans and the potential for a medical breakthrough in this deadly disease." Notably, StemCells, Inc., recently reported positive results from the first Phase 1 clinical trials assessing the safety of these human neural stem cells as a potential treatment for Batten disease.

The researchers include Stanley J. Tamaki, StemCells, Inc., Palo Alto, CA; Yakop Jacobs, StemCells, Inc., Palo Alto, CA; Monika Dohse, StemCells, Inc., Palo Alto, CA; Alexandra Capela, StemCells, Inc., Palo Alto, CA; Jonathan D. Cooper, King's College London, London, UK; Michael Reitsma, StemCells, Inc., Palo Alto, CA; Dongping He, StemCells, Inc., Palo Alto, CA; Robert Tushinski, StemCells, Inc., Palo Alto, CA; Pavel V. Belichenko, Stanford University School of Medicine, Stanford, CA; Ahmad Salehi, Stanford University School of Medicine, Stanford, CA; William Mobley, Stanford University School of Medicine, Stanford, CA ; Fred H. Gage, The Salk Institute for Biological Studies, La Jolla, CA; Stephen Huhn, StemCells, Inc., Palo Alto, CA; Ann S. Tsukamoto, StemCells, Inc., Palo Alto, CA; Irving L. Weissman, Stanford University School of Medicine, Stanford, CA; and Nobuko Uchida, StemCells, Inc., Palo Alto, CA.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Transplanted Human Stem Cells Prolong Survival In Mouse Model Of Rare Brain Disease." ScienceDaily. ScienceDaily, 4 September 2009. <www.sciencedaily.com/releases/2009/09/090903163556.htm>.
Cell Press. (2009, September 4). Transplanted Human Stem Cells Prolong Survival In Mouse Model Of Rare Brain Disease. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/09/090903163556.htm
Cell Press. "Transplanted Human Stem Cells Prolong Survival In Mouse Model Of Rare Brain Disease." ScienceDaily. www.sciencedaily.com/releases/2009/09/090903163556.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins