Featured Research

from universities, journals, and other organizations

Malignant Signature May Help Identify Patients Likely To Respond To Therapy

Date:
September 9, 2009
Source:
University of California - San Diego
Summary:
A molecular signature that helps account for the aggressive behavior of a variety of cancers such as pancreatic, breast and melanoma may also predict the likelihood of successful treatment with a particular anti-cancer drug. The finding could lead to a personalized approach to treatment for a variety of solid tumors that are currently resistant to therapies.

A molecular signature that helps account for the aggressive behavior of a variety of cancers such as pancreatic, breast and melanoma may also predict the likelihood of successful treatment with a particular anti-cancer drug. The finding, which could lead to a personalized approach to treatment for a variety of solid tumors that are currently resistant to therapies, will be published September 6 in the advance online edition of Nature Medicine.

Researchers at the Moores Cancer Center at the University of California, San Diego have discovered that a receptor sitting on the surface of certain aggressive tumor cells can activate a key enzyme, src-kinase, which helps tumor cells become more aggressive in the body. This enzyme is the target of the anticancer drug dasatinib, which blocks its activity and is currently approved for treating chronic myelogenous leukemia (CML). The scientists say that the presence of the receptor – a protein called integrin alpha-v beta-3 – on some of the more common solid tumors such as breast, colon, lung and pancreas could help identify individuals with many other types of cancer that are also likely to respond to the drug.

"These results could enable us to identify the subpopulation of cancer patients who are likely to respond to treatment with dasatinib," said David Cheresh, PhD, professor and vice chair of pathology at the UC San Diego School of Medicine and the Moores UCSD Cancer Center, who led the work. "Rather than treat all patients with a given tumor type the same way, by identifying a specific molecular signature consisting of the receptor and its activated enzyme, we can customize the treatment in such a way that we impact the patients most likely to be sensitive to a drug."

The researchers compared the growth properties of pancreatic and breast cancer cells that expressed the alpha-v beta-3 receptor versus those that did not, which led to the discovery of a molecular pathway that accounted for the increased malignancy.

"Once we identified the pathway, we immediately realized that the drug dasatinib, which targets this pathway, would be a logical choice to use against these cancers," Cheresh said. The group's studies in a preclinical model of pancreatic cancer confirmed that those tumor cells with the receptor responded to the drug, while those not expressing receptors did not.

Cheresh pointed to pancreatic cancer tumors, approximately 60 percent of which carry the marker on the tumor cell surface. "We would argue that pancreatic cancer patients with alpha-v beta-3 would respond to dasatinib," he said. Tumors lacking the marker appear to be resistant to the drug.

"We discovered an unexpected pathway that accounts for increased malignancy in a population of some of the most dangerous cancers," Cheresh said, noting that the marker could be identified by a biopsy. "There are features of the findings that allow us to implicate dasatinib not just for a single tumor type, but for all tumors with the malignant signature."

The findings have led to discussions about the potential design of a clinical trial. "These observations suggest a strategy for testing the effectiveness of dasatinib in breast cancer patients who are positive for the alpha-v beta-3 receptor," said Barbara Parker, MD, medical director of oncology services at the Moores UCSD Cancer Center.

Co-authors include: Jay Desgrosellier, PhD, Leo Barnes, David Shields, PhD, Miller Huang, Steven Lau, Nicolas Prevost, David Tarin, MD, and Sanford Shattil, MD.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Malignant Signature May Help Identify Patients Likely To Respond To Therapy." ScienceDaily. ScienceDaily, 9 September 2009. <www.sciencedaily.com/releases/2009/09/090906161055.htm>.
University of California - San Diego. (2009, September 9). Malignant Signature May Help Identify Patients Likely To Respond To Therapy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/09/090906161055.htm
University of California - San Diego. "Malignant Signature May Help Identify Patients Likely To Respond To Therapy." ScienceDaily. www.sciencedaily.com/releases/2009/09/090906161055.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins