Featured Research

from universities, journals, and other organizations

Malignant Signature May Help Identify Patients Likely To Respond To Therapy

Date:
September 9, 2009
Source:
University of California - San Diego
Summary:
A molecular signature that helps account for the aggressive behavior of a variety of cancers such as pancreatic, breast and melanoma may also predict the likelihood of successful treatment with a particular anti-cancer drug. The finding could lead to a personalized approach to treatment for a variety of solid tumors that are currently resistant to therapies.

A molecular signature that helps account for the aggressive behavior of a variety of cancers such as pancreatic, breast and melanoma may also predict the likelihood of successful treatment with a particular anti-cancer drug. The finding, which could lead to a personalized approach to treatment for a variety of solid tumors that are currently resistant to therapies, will be published September 6 in the advance online edition of Nature Medicine.

Related Articles


Researchers at the Moores Cancer Center at the University of California, San Diego have discovered that a receptor sitting on the surface of certain aggressive tumor cells can activate a key enzyme, src-kinase, which helps tumor cells become more aggressive in the body. This enzyme is the target of the anticancer drug dasatinib, which blocks its activity and is currently approved for treating chronic myelogenous leukemia (CML). The scientists say that the presence of the receptor – a protein called integrin alpha-v beta-3 – on some of the more common solid tumors such as breast, colon, lung and pancreas could help identify individuals with many other types of cancer that are also likely to respond to the drug.

"These results could enable us to identify the subpopulation of cancer patients who are likely to respond to treatment with dasatinib," said David Cheresh, PhD, professor and vice chair of pathology at the UC San Diego School of Medicine and the Moores UCSD Cancer Center, who led the work. "Rather than treat all patients with a given tumor type the same way, by identifying a specific molecular signature consisting of the receptor and its activated enzyme, we can customize the treatment in such a way that we impact the patients most likely to be sensitive to a drug."

The researchers compared the growth properties of pancreatic and breast cancer cells that expressed the alpha-v beta-3 receptor versus those that did not, which led to the discovery of a molecular pathway that accounted for the increased malignancy.

"Once we identified the pathway, we immediately realized that the drug dasatinib, which targets this pathway, would be a logical choice to use against these cancers," Cheresh said. The group's studies in a preclinical model of pancreatic cancer confirmed that those tumor cells with the receptor responded to the drug, while those not expressing receptors did not.

Cheresh pointed to pancreatic cancer tumors, approximately 60 percent of which carry the marker on the tumor cell surface. "We would argue that pancreatic cancer patients with alpha-v beta-3 would respond to dasatinib," he said. Tumors lacking the marker appear to be resistant to the drug.

"We discovered an unexpected pathway that accounts for increased malignancy in a population of some of the most dangerous cancers," Cheresh said, noting that the marker could be identified by a biopsy. "There are features of the findings that allow us to implicate dasatinib not just for a single tumor type, but for all tumors with the malignant signature."

The findings have led to discussions about the potential design of a clinical trial. "These observations suggest a strategy for testing the effectiveness of dasatinib in breast cancer patients who are positive for the alpha-v beta-3 receptor," said Barbara Parker, MD, medical director of oncology services at the Moores UCSD Cancer Center.

Co-authors include: Jay Desgrosellier, PhD, Leo Barnes, David Shields, PhD, Miller Huang, Steven Lau, Nicolas Prevost, David Tarin, MD, and Sanford Shattil, MD.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Malignant Signature May Help Identify Patients Likely To Respond To Therapy." ScienceDaily. ScienceDaily, 9 September 2009. <www.sciencedaily.com/releases/2009/09/090906161055.htm>.
University of California - San Diego. (2009, September 9). Malignant Signature May Help Identify Patients Likely To Respond To Therapy. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2009/09/090906161055.htm
University of California - San Diego. "Malignant Signature May Help Identify Patients Likely To Respond To Therapy." ScienceDaily. www.sciencedaily.com/releases/2009/09/090906161055.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins