Featured Research

from universities, journals, and other organizations

Engineers Produce 'How-to' Guide For Controlling Structure Of Nanoparticles

Date:
September 25, 2009
Source:
North Carolina State University
Summary:
Researchers have learned how to consistently create hollow, solid and amorphous nanoparticles of nickel phosphide, which has potential uses in the development of solar cells and as catalysts for removing sulfur from fuel. Their work can now serve as a "how-to" guide for other researchers to controllably create hollow, solid and amorphous nanoparticles -- in order to determine what special properties they may have.

Tiny objects known as nanoparticles are often heralded as holding great potential for future applications in electronics, medicine and other areas. The properties of nanoparticles depend on their size and structure. Now researchers from North Carolina State University have learned how to consistently create hollow, solid and amorphous nanoparticles of nickel phosphide, which has potential uses in the development of solar cells and as catalysts for removing sulfur from fuel. Their work can now serve as a “how-to” guide for other researchers to controllably create hollow, solid and amorphous nanoparticles – in order to determine what special properties they may have.

The study provides a step-by-step analysis of how to create solid or hollow nanoparticles that are all made of the same material. “It’s been known that these structures could be made,” says Dr. Joe Tracy, an assistant professor of material science engineering at NC State and co-author of the paper, “but this research provides us with a comprehensive understanding of nanostructural control during nanoparticle formation, showing how to consistently obtain different structures in the lab.” The study also shows how to create solid nanoparticles that are amorphous, meaning they do not have a crystalline structure.

Tracy explains that there is a great deal of interest in the formation of hollow nanoparticles and amorphous nanoparticles. But for many kinds of nanoparticles, there had previously been no clear understanding of how to control the formation of these structures. As a result of the new study, Tracy says, “nanoparticles with desired structures can be made more consistently, making it easier for researchers to determine their electronic, optical and catalytic properties.” For example, amorphous nanoparticles may be of use in future electronic applications or for nanostructure fabrication. Tracy stresses that while the NC State researchers were able to show how to create hollow nanoparticles and amorphous nanoparticles, they were not able to create nanoparticles that were both hollow and amorphous.

The study could also have implications for many additional types of nanoparticles, not just nickel phosphide. Tracy says that the findings “could provide important insights for further studies to control the structures of many other kinds of nanoparticles, with a wide array of potential applications.” These could include metal oxide, sulfide, selenide and phosphide nanoparticles.

Specifically, the researchers found that they could control whether nickel phosphide nanoparticles would be hollow or solid by adjusting the ratio of phosphorus to nickel reactants when they synthesized the nanoparticles. The researchers found that they could create amorphous solid nanoparticles by controlling the temperature.

The study, “Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures,” was co-authored by Tracy, NC State post-doctoral researcher Junwei Wang and NC State Ph.D. student Aaron Johnston-Peck. The research was funded by NC State and the National Science Foundation, and was published online by Chemistry of Materials.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Junwei Wang, Aaron C. Johnston-Peck, Joe Tracy. Nickel Phosphide Nanoparticles with Hollow, Solid, and Amorphous Structures. Chemistry of Materials, 2009; 090917062256084 DOI: 10.1021/cm901073k

Cite This Page:

North Carolina State University. "Engineers Produce 'How-to' Guide For Controlling Structure Of Nanoparticles." ScienceDaily. ScienceDaily, 25 September 2009. <www.sciencedaily.com/releases/2009/09/090924101630.htm>.
North Carolina State University. (2009, September 25). Engineers Produce 'How-to' Guide For Controlling Structure Of Nanoparticles. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/09/090924101630.htm
North Carolina State University. "Engineers Produce 'How-to' Guide For Controlling Structure Of Nanoparticles." ScienceDaily. www.sciencedaily.com/releases/2009/09/090924101630.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins