Featured Research

from universities, journals, and other organizations

Microchip That Can Detect Type And Severity Of Cancer Created

Date:
September 30, 2009
Source:
University of Toronto
Summary:
Researchers have used nanomaterials to develop a microchip sensitive enough to quickly determine the type and severity of a patient's cancer so that the disease can be detected earlier for more effective treatment.

UofT researchers have used nanomaterials to develop a microchip sensitive enough to quickly determine the type and severity of a patient's cancer so that the disease can be detected earlier for more effective treatment.

Related Articles


Their groundbreaking work, reported Sept. 27 in Nature Nanotechnology heralds an era when sophisticated molecular diagnostics will become commonplace.

"This remarkable innovation is an indication that the age of nanomedicine is dawning," says Professor David Naylor, president of the University of Toronto and a professor of medicine. "Thanks to the breadth of expertise here at U of T, cross-disciplinary collaborations of this nature make such landmark advances possible."

The researchers' new device can easily sense the signature biomarkers that indicate the presence of cancer at the cellular level, even though these biomolecules – genes that indicate aggressive or benign forms of the disease and differentiate subtypes of the cancer – are generally present only at low levels in biological samples. Analysis can be completed in 30 minutes, a vast improvement over the existing diagnostic procedures that generally take days.

"Today, it takes a room filled with computers to evaluate a clinically relevant sample of cancer biomarkers and the results aren't quickly available," says Shana Kelley, a professor in the Leslie Dan Faculty of Pharmacy and the Faculty of Medicine, who was a lead investigator on the project and a co-author on the publication.

"Our team was able to measure biomolecules on an electronic chip the size of your fingertip and analyse the sample within half an hour. The instrumentation required for this analysis can be contained within a unit the size of a BlackBerry."

Kelley, along with engineering professor Ted Sargent – a fellow lead investigator and U of T's Canada Research Chair in Nanotechnology – and an interdisciplinary team from Princess Margaret Hospital and Queen's University, found that conventional, flat metal electrical sensors were inadequate to sense cancer's particular biomarkers. Instead, they designed and fabricated a chip and decorated it with nanometre-sized wires and molecular "bait."

"Uniting DNA – the molecule of life – with speedy, miniaturized electronic chips is an example of cross-disciplinary convergence," says Sargent. "By working with outstanding researchers in nanomaterials, pharmaceutical sciences, and electrical engineering, we were able to demonstrate that controlled integration of nanomaterials provides a major advantage in disease detection and analysis."

The speed and accuracy provided by their device is welcome news to cancer researchers.

"We rely on the measurement of biomarkers to detect cancer and to know if treatments are working," says Dr. Tom Hudson, president and scientific director of the Ontario Institute for Cancer Research. "The discovery by Dr. Kelley and her team offers the possibility of a faster, more cost-effective technology that could be used anywhere, speeding up diagnosis and helping to deliver a more targeted treatment to the patient."

The team's microchip platform has been tested on prostate cancer, as described in a paper published in ACS Nano, and head and neck cancer models. It could potentially be used to diagnose and assess other cancers, as well as infectious diseases such as HIV, MRSA and H1N1 flu.

"The system developed by the Kelley/Sargent team is a revolutionary technology that could allow us to track biomarkers that might have significant relevance to cancer, with a combination of speed, sensitivity, and accuracy not available with any current technology," says Dr. Fei-Fei Liu, a radiation oncologist at Princess Margaret Hospital and Head of Applied Molecular Oncology Division, Ontario Cancer Institute. "This type of approach could have a profound impact on the future management for our cancer patients."

The research was funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, the Ontario Genomics Institute, Genome Canada, the Ontario Institute for Cancer Research, the Ontario Ministry of Research and Innovation and the Prostate Cancer Research Foundation of Canada.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University of Toronto. "Microchip That Can Detect Type And Severity Of Cancer Created." ScienceDaily. ScienceDaily, 30 September 2009. <www.sciencedaily.com/releases/2009/09/090928095345.htm>.
University of Toronto. (2009, September 30). Microchip That Can Detect Type And Severity Of Cancer Created. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2009/09/090928095345.htm
University of Toronto. "Microchip That Can Detect Type And Severity Of Cancer Created." ScienceDaily. www.sciencedaily.com/releases/2009/09/090928095345.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins