Featured Research

from universities, journals, and other organizations

Models Begin To Unravel How Single DNA Strands Combine

Date:
October 7, 2009
Source:
University of Wisconsin-Madison
Summary:
Using computer simulations, researchers have identified some of the pathways through which single complementary strands of DNA interact and combine to form the double helix.

Using computer simulations, a team of University of Wisconsin-Madison researchers has identified some of the pathways through which single complementary strands of DNA interact and combine to form the double helix.

Present in the cells of all living organisms, DNA is composed of two intertwined strands and contains the genetic "blueprint" through which all living organisms develop and function. Individual strands consist of nucleotides, which include a base, a sugar and a phosphate moiety.

Understanding hybridization, the process through which single DNA strands combine to form a double helix is fundamental to biology and central to technologies such as DNA microchips or DNA-based nanoscale assembly. The research by the Wisconsin group begins to unravel how DNA strands come together and bind to each other, says Juan J. de Pablo, UW-Madison Howard Curler Distinguished Professor of Chemical and Biological Engineering.

The team published its findings (Oct. 5) in the Proceedings of the National Academy of Sciences. In addition to senior author de Pablo, the group included David C. Schwartz, a UW-Madison professor of chemistry and genetics, and former postdoctoral research fellow Edward J. Sambriski, now an assistant professor of chemistry at Delaware Valley College in Pennsylvania.

The three drew on detailed molecular DNA models developed by de Pablo's research group to study the reaction pathways through which double-stranded DNA undergo denaturation, where the molecule uncoils and separates into single strands, and hybridization, through which complementary DNA strands bind, or "hybridize." In Watson-Crick base pairing, A (adenine) pairs with T (thymine), while G (guanine) pairs with C (cytosine). Reaction pathways are the trajectories single DNA strands follow to find each other and connect via such complementary pairs.

The researchers studied both random and repetitive base sequences. Random sequences of the four bases — A, T, G and C — contained little or no regular repetition. To the researchers' surprise, a couple of bases located toward the center of the strand associate early in the hybridization process. The moment they find each other, they bind and the entire molecule hybridizes rapidly and in a highly organized manner.

Conversely, in repetitive sequences, the bases alternated regularly, and the group found that these sequences bind through a so-called diffusive process. "The two strands of DNA somehow find each other, they connect to each other in no particular order, and then they slide past each other for a long time until the exact complements find one another in the right order, and then they hybridize," says de Pablo.

Results of the team's study show that DNA hybridization is very sensitive to DNA composition, or sequence. "Contrary to what was thought previously, we found that the actual process by which complementary DNA strands hybridize is very sensitive to the sequence of the molecules," he says.

Knowledge of how the process occurs could enable researchers to more strategically design technologies such as gene chips. For example, says de Pablo, if a researcher wanted to design sequences that bind very rapidly or with high efficiency, he or she could place certain bases in specific locations, so that the hybridization reaction could occur faster or more reliably.

Ultimately, the research could help biologists understand why some hybridization reactions are faster or more robust than others. "One of the really exciting things about this work is that the hybridization reaction between two strands of DNA is really fundamental to life itself," says de Pablo. "It is the basis for much of biology. And it is amazing to me that, until now, we knew little of how this reaction actually proceeds."

The National Science Foundation-funded Nanoscale Science and Engineering Center on Templated Synthesis and Assembly at the Nanoscale at UW-Madison sponsored the research.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Models Begin To Unravel How Single DNA Strands Combine." ScienceDaily. ScienceDaily, 7 October 2009. <www.sciencedaily.com/releases/2009/10/091006161812.htm>.
University of Wisconsin-Madison. (2009, October 7). Models Begin To Unravel How Single DNA Strands Combine. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/10/091006161812.htm
University of Wisconsin-Madison. "Models Begin To Unravel How Single DNA Strands Combine." ScienceDaily. www.sciencedaily.com/releases/2009/10/091006161812.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins