Featured Research

from universities, journals, and other organizations

Electrostatic Surface Cleaning

Date:
October 12, 2009
Source:
Fraunhofer-Gesellschaft
Summary:
The smallest particles often make a huge difference. If they accumulate on the surface of a product during manufacturing, the quality of the goods may be impaired. A new method removes even the smallest particles safely and effectively.

The equipment removes fine dust particles effectively from product surfaces -- and collects them safely.
Credit: Copyright Fraunhofer IGB

It’s often the little things that count in industrial manufacturing processes. Particles less than half the diameter of a hair in size can significantly impair quality in production. For example, there should be no particles larger than five micrometers on the packaging film of food and medicines, as these could contaminate the contents.

Related Articles


Tiny particles also cause problems in the printing industry, as they reduce the quality of the print if they remain on the surface of the paper. And fine particles on electrical components can cause operational failures.

Manufacturers usually resort to a type of vacuum cleaner to remove the dust – it blows air on the contaminated surface, then sucks this in again, together with the undesired particles. However, this method does not effectively remove particles smaller than 20 micrometers, as the electrostatic force causes the majority of them to remain on the surface.

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have developed a system which also removes these fine dust particles effectively from the product surfaces. Colleagues from NITO A/S in Denmark, Ziegener + Frick GmbH in Ellhofen and the Danish Innovation Institute were involved in the development process.

“The system guarantees the quality of the product and improves the working environment of employees, as it reliably collects the harmful particles, preventing them from going into the air and then into the lungs of employees,“ says Sukhanes Laopeamthong, a researcher at the IGB.

The researchers charge the dust particles with positive ions. A negatively charged electrode attracts the positively charged dust particles, the resulting force lifting the dust particles easily from the surface of the product. A controlled air current carries them to the dust collector. Prior to the construction of the test equipment, the researchers have already resolved a few questions using special simulation software.

What electrical field strength is required to lift the dust particles? What are the required characteristics of the air current transporting the particles? The test equipment removes on average 85 percent of dust particles smaller than 15 micrometers and more than 95 percent of dust particles bigger than 15 micrometers. The researchers are presenting the exhibit at the Parts2Clean trade fair from 20 to 22 October in Stuttgart (hall 1, stand F 610/G 709). The scientists expect the system to be operational in industry in approximately two years.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Electrostatic Surface Cleaning." ScienceDaily. ScienceDaily, 12 October 2009. <www.sciencedaily.com/releases/2009/10/091007091647.htm>.
Fraunhofer-Gesellschaft. (2009, October 12). Electrostatic Surface Cleaning. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2009/10/091007091647.htm
Fraunhofer-Gesellschaft. "Electrostatic Surface Cleaning." ScienceDaily. www.sciencedaily.com/releases/2009/10/091007091647.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins