Featured Research

from universities, journals, and other organizations

Chemosensitivity Of Cancer Cells Depends On Their Protein Dependency

Date:
October 26, 2009
Source:
Rockefeller University Press
Summary:
Two different anti-apoptotic proteins support cancer cell survival via an identical mechanism, yet differ in their sensitivity to chemotherapeutic drugs, researchers report.

The spleen of mice overexpressing the oncogene c-myc and the anti-apoptotic protein MCL-1 is crowded with leukemia cells.
Credit: Brunelle, J.K., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200904049

Two different anti-apoptotic proteins support cancer cell survival via an identical mechanism, yet differ in their sensitivity to chemotherapeutic drugs, report Brunelle et al. The study will be published online October 26, 2009 and in the November 2, 2009 print issue of the Journal of Cell Biology (JCB).

Cancer cells often become dependent on one or more anti-apoptotic proteins to avoid death while continuing to proliferate. BCL-2, for example, is overexpressed in many cancers and mops up pro-apoptotic proteins to prevent them from permeabilizing mitochondria and initiating cell death. Other tumors are reliant on a related protein called MCL-1, but less is known about this member of the BCL-2 family. Brunelle et al. created leukemic mice overexpressing MCL-1 and compared them to similar mice that produced excess BCL-2.

The leukemias suffered by these two types of mice were identical, yet a technique called BH3 profiling was able to distinguish between cells derived from the different animals by demonstrating a dependency on one or other of the two anti-apoptotic proteins. Immunoprecipitation experiments revealed that MCL-1 and BCL-2 both work by sequestering the same two pro-apoptotic targets. Surprisingly then, leukemia cells reliant on MCL-1 were much more sensitive to a range of chemotherapeutic drugs than their BCL-2-dependent counterparts were. Brunelle et al. found that the different cytotoxic drugs all caused a rapid decrease in MCL-1 protein levels via proteosome-mediated degradation, allowing cell death to proceed quickly. BCL-2 protein is more stable however, so additional time and more drug is needed to kill BCL-2-dependent cancer cells.

Thus, the block in apoptosis selected during oncogenesis is not necessarily complete, and can have a major influence on the cancer's chemosensitivity. Senior author Anthony Letai now plans to use BH3 profiling on human tumors, to determine which anti-apoptotic protein a patient's cancer is dependent on and to correlate this with the tumor's response to chemotherapy.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brunelle et al. MCL-1-dependent leukemia cells are more sensitive to chemotherapy than BCL-2-dependent counterparts. The Journal of Cell Biology, 2009; DOI: 10.1083/jcb.200904049

Cite This Page:

Rockefeller University Press. "Chemosensitivity Of Cancer Cells Depends On Their Protein Dependency." ScienceDaily. ScienceDaily, 26 October 2009. <www.sciencedaily.com/releases/2009/10/091026093712.htm>.
Rockefeller University Press. (2009, October 26). Chemosensitivity Of Cancer Cells Depends On Their Protein Dependency. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2009/10/091026093712.htm
Rockefeller University Press. "Chemosensitivity Of Cancer Cells Depends On Their Protein Dependency." ScienceDaily. www.sciencedaily.com/releases/2009/10/091026093712.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins