Featured Research

from universities, journals, and other organizations

Venomous Shrew And Lizard: Harmless Digestive Enzyme Evolved Twice Into Dangerous Toxin In Two Unrelated Species

Date:
November 2, 2009
Source:
Harvard University
Summary:
Biologists have shown that independent but similar molecular changes turned a harmless digestive enzyme into a toxin in two unrelated species -- a shrew and a lizard -- giving each a venomous bite.

A harmless digestive enzyme can be turned into a toxin in two unrelated species -- a shrew (pictured) and a lizard -- thereby giving each a venomous bite.
Credit: iStockphoto

Biologists have shown that independent but similar molecular changes turned a harmless digestive enzyme into a toxin in two unrelated species -- a shrew and a lizard -- giving each a venomous bite.

The work, described this week in the journal Current Biology by researchers at Harvard University, suggests that protein adaptation may be a highly predictable process, one that could eventually help discover other toxins across a wide array of species.

"Similar changes have occurred independently in a shrew and a lizard, causing both to be toxic," says senior author Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Department of Organismic and Evolutionary Biology. "It's remarkable that the same types of changes have independently promoted the same toxic end product."

Lead author Yael T. Aminetzach, a postdoctoral researcher in the same department, suggests that the work has important implications for our understanding of how novel protein function evolves by studying the relationship between an ancestral and harmless protein and its new toxic activity.

"The venom is essentially an overactivation of the original digestive enzyme, amplifying its effects," she says. "What had been a mild anticoagulant in the salivary glands of both species has become a much more extreme compound that causes paralysis and death in prey that is bitten."

In the first part of the study, Aminetzach and her colleagues compared a toxin found in the salivary glands of the insectivorous North American shrew Blarina brevicauda to its closely related digestive enzyme kallikrein. Enzymes are proteins that catalyze, or increase the rates of, chemical reactions; this rate enhancement occurs at a specific region on an enzyme called the active site.

Aminetzach found that the specific molecular differences between kallikrein and its toxic descendent are highly localized around the enzyme's active site.

"Catalysis is fostered by three specific changes that increase enzyme activity," Aminetzach says. "The active site is physically opened up, and the loops surrounding it become more flexible. The area around the active site also becomes positively charged, serving to better guide the substrate directly into the active site."

To further demonstrate that these molecular changes to kallikrein are related to the evolution of toxicity, Aminetzach explored the evolution of another kallikrein-like toxin in the Mexican beaded lizard (Helodermata horridum). She found that this toxin, while distinct from the analogous toxin in the shrew, nonetheless exhibits the same catalytic enhancement relative to the original kallikrein enzyme.

Equally important, she found that this functional change in the lizard toxin is accomplished through similar molecular modifications of kallikrein, and through identical mechanisms of structural alteration of the active site, as in the shrew toxin.

This insight -- namely, that toxins could arise by increasing the catalytic activity of enzymes through a conserved and predictable mechanism -- could be used both to identify other kallikrein-derived toxic proteins and as a method to evolve new protein function in general.

Aminetzach's and Hoekstra's co-authors on the Current Biology paper are John Srouji of Harvard's Department of Molecular and Cellular Biology and Chung Yin Kong of Massachusetts General Hospital. Their work was funded by the Federico Foundation and Harvard University.


Story Source:

The above story is based on materials provided by Harvard University. The original article was written by Samuel Bjork, Harvard Staff Writer. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Venomous Shrew And Lizard: Harmless Digestive Enzyme Evolved Twice Into Dangerous Toxin In Two Unrelated Species." ScienceDaily. ScienceDaily, 2 November 2009. <www.sciencedaily.com/releases/2009/10/091029125532.htm>.
Harvard University. (2009, November 2). Venomous Shrew And Lizard: Harmless Digestive Enzyme Evolved Twice Into Dangerous Toxin In Two Unrelated Species. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2009/10/091029125532.htm
Harvard University. "Venomous Shrew And Lizard: Harmless Digestive Enzyme Evolved Twice Into Dangerous Toxin In Two Unrelated Species." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029125532.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Working Mother DIY: Pumpkin Pom-Pom

Working Mother DIY: Pumpkin Pom-Pom

Working Mother (Oct. 22, 2014) How to make a pumpkin pom-pom. Video provided by Working Mother
Powered by NewsLook.com
San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Bear Cub Strolls Through Oregon Drug Store

Raw: Bear Cub Strolls Through Oregon Drug Store

AP (Oct. 22, 2014) Shoppers at an Oregon drug store were surprised by a bear cub scurrying down the aisles this past weekend. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Family Pleads for Pet Pig to Stay at Home

Family Pleads for Pet Pig to Stay at Home

AP (Oct. 22, 2014) The Johnson family lost their battle with the Chesterfield County, Virginia Planning Commission to allow Tucker, their pet pig, to stay in their home, but refuse to let the board keep Tucker away. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins