Featured Research

from universities, journals, and other organizations

Inhibitor Of Heat Shock Protein Is A Potential Anticancer Drug, Study Finds

Date:
November 11, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
Like yoga for office drones, cells do have coping strategies for stress. Heat, lack of nutrients, oxygen radicals -- all can wreak havoc on the delicate internal components of a cell, potentially damaging it beyond repair. Proteins called HSPs (heat shock proteins) allow cells to survive stress-induced damage. Scientists have long studied how HSPs work in order to harness their therapeutic potential.

Accumulation of holes, called vacuoles, inside a cell, which are associated with protein aggregation and disrupted regulation of normal protein degradation processes following exposure of cells to the HSP70 inhibitor.
Credit: Donna George, PhD, University of Pennsylvania School of Medicine

Like yoga for office drones, cells do have coping strategies for stress. Heat, lack of nutrients, oxygen radicals -- all can wreak havoc on the delicate internal components of a cell, potentially damaging it beyond repair. Proteins called HSPs (heat shock proteins) allow cells to survive stress-induced damage. Scientists have long studied how HSPs work in order to harness their therapeutic potential.

Donna George, PhD, Associate Professor of Genetics, and Julie Leu, PhD, Assistant Professor of Genetics, both at the University of Pennsylvania School of Medicine, in collaboration with the lab of Maureen Murphy, PhD at Fox Chase Cancer Center, identified a small molecule that inhibits the heat shock protein HSP70. They also showed that the HSP inhibitor could stop tumor formation and significantly extend survival of mice. They describe their findings in this month's issue of Molecular Cell.

HSP70 is an intracellular quality control officer, refolding misfolded proteins and preventing protein aggregation, which among other disorders, is associated with neurodegenerative diseases. HSP70 also ferries proteins to their proper intracellular locations. Tumor cells, which face an abundance of cellular stresses, typically overexpress HSP70, making it a potentially interesting anticancer target.

The cancer microenvironment exposes malignant cells to a variety of stressful conditions that promote protein misfolding. HSP70 helps cancer cells deal with this stress. Unlike normal cells, which typically express little, if any, of HSP70, cancer cells contain high levels of this protein all of the time. Indeed, HSP70 has been termed a cancer-critical survival factor, since cancer cells probably require the actions of this protein to survive the protein-altering adverse conditions. The inhibitor, called PES, interferes with the HSP70 activities that the cancer cell needs to survive, so by targeting HSP70, one can target the cancer cell.

The investigators showed that PES interacts with HSP70 by blocking its stress-relieving functions. It also induces HSP70-dependent cell death by disrupting the cell's ability to remove damaged components. Paradoxically for a compound first identified for blocking the cell-death pathway of apoptosis, PES does kill cells, but by a different mechanism.

PES seems to be specifically targeting HSP70, a protein that is differentially expressed in normal versus cancerous cells, and "one that the cancer cell seems to require to survive" says George. "It's still early days -- we don't know what it will do in a human. But, the exciting part is that this is a pathway and a protein target that clearly is important for cancer cells."

Given the extreme heterogeneity of cancer cells, simultaneously disabling networks of signaling pathways may be important. Indeed, PES was more or less equally effective in every type of cancer cell tested, she says, "which is unusual and supports the idea that it is targeting a protein that is required for the functioning of multiple pathways."

To figure out just what PES was doing Leu chemically tagged it to see what proteins it interacted with. They were surprised and excited to have pulled out HSP70.

Next, the team investigated the consequences of PES binding. Like many proteins, HSP70 doesn't act alone; it functions through a cadre of interacting proteins, which augment its activity. So, the team systematically scanned these proteins, to see if PES blocked their interactions with HSP70. "We found several known HSP70-interacting proteins that were no longer interacting properly when the cells were exposed to the small molecule," Leu notes.

Among those were proteins that help HSP70 refold misfolded proteins and proteins that abet its protein trafficking functions.

When they then studied the effect that loss of those functions had on the cell, the team discovered that PES blocks the cell's ability to get rid of the proteins damaged by cellular stress in a process called autophagy, a process in which cells were basically eating themselves to death. In mice, Murphy and her students Julia Pimkina and Amanda Frank found that PES could inhibit tumor formation and significantly extend survival.

"That was one of the highlights from our perspective, because PES has potential to be developed as a therapeutic," says Murphy.

PES should also be a boon to researchers trying to untangle the biology of HSP70, say the researchers. Other HSP70 inhibitors exist but they are neither generally available, nor sufficiently specific. It also provides a novel platform for anticancer therapeutics, either directly as a treatment, or as a starting point for further development.

The research was funded by the National Cancer Institute and National Institute of Diabetes and Digestive and Kidney Diseases.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Inhibitor Of Heat Shock Protein Is A Potential Anticancer Drug, Study Finds." ScienceDaily. ScienceDaily, 11 November 2009. <www.sciencedaily.com/releases/2009/10/091029211644.htm>.
University of Pennsylvania School of Medicine. (2009, November 11). Inhibitor Of Heat Shock Protein Is A Potential Anticancer Drug, Study Finds. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/10/091029211644.htm
University of Pennsylvania School of Medicine. "Inhibitor Of Heat Shock Protein Is A Potential Anticancer Drug, Study Finds." ScienceDaily. www.sciencedaily.com/releases/2009/10/091029211644.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins