Featured Research

from universities, journals, and other organizations

Flipping A Photonic Shock Wave

Date:
November 10, 2009
Source:
American Physical Society
Summary:
Physicists have directly observed a reverse shock wave of light in a specially tailored structure known as a left-handed metamaterial. Although it was first predicted over forty years ago, this is the first unambiguous experimental demonstration of the effect.

(Top left) Schematic of Cerenkov radiation in a conventional natural medium with positive refractive index, such as water, in which the radiation falls in a cone in the forward direction. (Bottom left) Schematic of backward Cerenkov radiation in a left-handed medium, showing the reversed cone. (Right) Schematic of the two-dimensional experimental configuration and the photographic image of the negative index metamaterials used to demonstrate backward Cerenkov radiation. The metamaterials consist of in-plane split-ring resonators and metal wires.

Physicists have developed a new metamaterial structure that successfully demonstrates reverse Cerenkov radiation. They have directly observed a reverse shock wave of light in a specially tailored structure known as a left-handed metamaterial.

Related Articles


Although it was first predicted over forty years ago, this is the first unambiguous experimental demonstration of the effect. The research is reported in Physical Review Letters and highlighted in the November 2 issue of Physics.

Light moving in a vacuum sets the ultimate speed limit, but light travels more slowly through materials like glass and air. Speedy electrons or other charged particles can briefly outrun light in matter, producing a shock wave in the form of a cone of light known as Cerenkov radiation. The eerie blue glow in the cooling water of nuclear reactors is result of particles moving faster than the speed of light in water. In normal substances, the radiation is emitted in a forward cone. Left-handed metamaterials, however, have unusual effects on light that should reverse the cone's direction.

When light enters a normal material like glass, it changes direction, allowing us to make lenses that correct poor vision. When light enters a left-handed metamaterial, the change is opposite to the direction that would occur in normal materials. (The materials are "left-handed" because they affect light oppositely from "right-handed" normal materials.) This means that the cone of Cerenkov radiation from a faster-than-light particle should propagate backward in a left-handed metamaterial. But experimental difficulties have prevented confirmation of the effect despite its prediction in 1968.

Now a team of physicists at Zhejiang University in China and the Massachusetts Institute of Technology has developed a new metamaterial structure that successfully demonstrates reverse Cerenkov radiation. Instead of injecting faster-than-light particles into their metamaterial, they created an optical analogue of particles moving at twice light speed. This allowed them to produce a much stronger burst of reverse Cerenkov light than they could have gotten with a real particle beam. Besides verifying a decades-old theoretical prediction, the experiment suggests a new possible application of left-handed metamaterials as detectors of high-speed particles in accelerators and other experiments.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Flipping A Photonic Shock Wave." ScienceDaily. ScienceDaily, 10 November 2009. <www.sciencedaily.com/releases/2009/11/091102111841.htm>.
American Physical Society. (2009, November 10). Flipping A Photonic Shock Wave. ScienceDaily. Retrieved February 26, 2015 from www.sciencedaily.com/releases/2009/11/091102111841.htm
American Physical Society. "Flipping A Photonic Shock Wave." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102111841.htm (accessed February 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, February 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
In Japan, Robot Dogs Are for Life -- And Death

In Japan, Robot Dogs Are for Life -- And Death

AFP (Feb. 25, 2015) Robot dogs are the perfect pet for some in Japan who go to repairmen-turned-vets when their pooch breaks down - while a full Buddhist funeral ceremony awaits those who don&apos;t make it. Duration: 02:40 Video provided by AFP
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Researchers Replace Damaged Hands With Prostheses

Researchers Replace Damaged Hands With Prostheses

Newsy (Feb. 25, 2015) Scientists in Austria have been able to fit patients who&apos;ve lost the use of a hand with bionic prostheses the patients control with their minds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins