Featured Research

from universities, journals, and other organizations

Carbon Atmosphere Discovered On Neutron Star

Date:
November 5, 2009
Source:
Chandra X-ray Center
Summary:
Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery resolves a ten-year mystery surrounding this object. In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star.

New evidence from Chandra suggests that the neutron star at the center of the Cas A supernova remnant has an ultra-thin carbon atmosphere. This uniform carbon atmosphere would explain the lack of X-ray pulsations from this object because the neutron star would be unlikely to display any changes as it rotates. The absence of pulsations has been a mystery since the neutron star was discovered in Chandra's "First Light" image over a decade ago. The carbon atmosphere is thought to be only about four inches thick, with a density similar to diamond and a pressure more than 10 times that found at the center of the Earth.
Credit: X-ray: NASA/CXC/Southampton/W. Ho et al.; Illustration: NASA/CXC/M.Weiss

Evidence for a thin veil of carbon has been found on the neutron star in the Cassiopeia A supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory, resolves a ten-year mystery surrounding this object.

"The compact star at the center of this famous supernova remnant has been an enigma since its discovery," said Wynn Ho of the University of Southampton and lead author of a paper that appears in the November 5 issue of Nature. "Now we finally understand that it can be produced by a hot neutron star with a carbon atmosphere."

By analyzing Chandra's X-ray spectrum -- akin to a fingerprint of energy -- and applying it to theoretical models, Ho and his colleague Craig Heinke, from the University of Alberta, determined that the neutron star in Cassiopeia A, or Cas A for short, has an ultra-thin coating of carbon. This is the first time the composition of an atmosphere of an isolated neutron star has been confirmed.

The Chandra "First Light" image of Cas A in 1999 revealed a previously undetected point-like source of X-rays at the center. This object was presumed to be a neutron star, the typical remnant of an exploded star, but researchers were unable to understand its properties. Defying astronomers' expectations, this object did not show any X-ray or radio pulsations or any signs of radio pulsar activity.

By applying a model of a neutron star with a carbon atmosphere to this object, Ho and Heinke found that the region emitting X-rays would uniformly cover a typical neutron star. This would explain the lack of X-ray pulsations because -- like a lightbulb that shines consistently in all directions -- this neutron star would be unlikely to display any changes in its intensity as it rotates.

Scientists previously have used a neutron star model with a hydrogen atmosphere giving a much smaller emission area, corresponding to a hot spot on a typical neutron star, which should produce X-ray pulsations as it rotates. Interpreting the hydrogen atmosphere model without pulsations would require a tiny size, consistent only with exotic stars made of strange quark matter.

"Our carbon veil solves one of the big questions about the neutron star in Cas A," said Craig Heinke. "People have been willing to consider some weird explanations, so it's a relief to discover a less peculiar solution."

Unlike most astronomical objects, neutron stars are small enough to understand on a human scale. For example, neutron stars typically have a diameter of about 14 miles, only slightly longer than a half-marathon. The atmosphere of a neutron star is on an even smaller scale. The researchers calculate that the carbon atmosphere is only about 4 inches thick, because it has been compressed by a surface gravity that is 100 billion times stronger than on Earth.

"For people who are used to hearing about immense sizes of things in space, it might be a surprise that we can study something so small," said Ho. "It's also funny to think that such a thin veil over this star played a key role in frustrating researchers."

In Earth's time frame, the estimated age of the neutron star in Cas A is only several hundred years, making it about ten times younger than other neutron stars with detected surface emission. Therefore, the Cas A neutron star gives a unique window into the early life of a cooling neutron star.

The carbon itself comes from a combination of material that has fallen back after the supernova, and nuclear reactions on the hot surface of the neutron star which convert hydrogen and helium into carbon.

The X-ray spectrum and lack of pulsar activity suggest that the magnetic field on the surface of this neutron star is relatively weak. Similarly low magnetic fields are implied for several other young neutron stars by study of their weak X-ray pulsations. It is not known whether these neutron stars will have low magnetic fields for their entire lives, and never become radio pulsars, or whether processes in their interior will lead to the development of stronger magnetic fields as they age.


Story Source:

The above story is based on materials provided by Chandra X-ray Center. Note: Materials may be edited for content and length.


Cite This Page:

Chandra X-ray Center. "Carbon Atmosphere Discovered On Neutron Star." ScienceDaily. ScienceDaily, 5 November 2009. <www.sciencedaily.com/releases/2009/11/091104132808.htm>.
Chandra X-ray Center. (2009, November 5). Carbon Atmosphere Discovered On Neutron Star. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/11/091104132808.htm
Chandra X-ray Center. "Carbon Atmosphere Discovered On Neutron Star." ScienceDaily. www.sciencedaily.com/releases/2009/11/091104132808.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Space X Launches to Space Station

Raw: Space X Launches to Space Station

AP (Apr. 18, 2014) On it's second attempt this week, The Space X company launched Friday from Cape Canaveral to ferry supplies to the International Space Station. (April 18) Video provided by AP
Powered by NewsLook.com
Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Unmanned Falcon 9 Rocket Blasts Off from Cape Canaveral Air Force Station in Florida

Reuters - US Online Video (Apr. 18, 2014) The rocket, built and operated by Space Exploration Technologies, carries a Dragon cargo ship loaded with supplies and equipment destined for the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Earth's Near-Twin Found Orbiting Red Dwarf

Earth's Near-Twin Found Orbiting Red Dwarf

Newsy (Apr. 17, 2014) The newly-discovered planet is roughly the size of Earth and could have liquid water on its surface. Video provided by Newsy
Powered by NewsLook.com
New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins