Featured Research

from universities, journals, and other organizations

Materials Scientists Find Better Model For Glass Creation

Date:
November 6, 2009
Source:
Harvard University
Summary:
Materials scientists have come up with what they believe is a new way to model the formation of glasses, a type of amorphous solid that includes common window glass.

“A glass is permanent, but only over a certain time scale. It’s a liquid that just stopped moving, stopped flowing,” said David Weitz, Mallinckrodt Professor of Physics and Applied Physics in Harvard’s School of Engineering and Applied Sciences (SEAS) and the Department of Physics.
Credit: Photography by Stephanie Mitchell/Harvard Staff Photographer

Harvard materials scientists have come up with what they believe is a new way to model the formation of glasses, a type of amorphous solid that includes common window glass.

Glasses form through the process of vitrification, in which a glass-forming liquid cools and slowly becomes a solid whose molecules, though they've stopped moving, are not permanently locked into a crystal structure. Instead, they're more like a liquid that has merely stopped flowing, though they can continue to move over long stretches of time.

"A glass is permanent, but only over a certain time scale. It's a liquid that just stopped moving, stopped flowing," said David Weitz, Mallinckrodt Professor of Physics and Applied Physics at Harvard's School of Engineering and Applied Sciences (SEAS) and the Department of Physics. "A crystal has a very unique structure, a very ordered structure that repeats itself over and over. A glass never repeats itself. It wants to be a crystal but something is preventing it from being a crystal."

Other than window glass, made from silica or silicon dioxide, Weitz said many sugars are glasses. Honey, for example, is not a glass at room temperature, but as it cools down and solidifies, it becomes a glass.

Scientists like Weitz use models to understand the properties of glasses. Weitz and members of his research group, together with colleagues at Columbia University and the University of North Texas, report in this week's Nature a new wrinkle on an old model that seems to improve how well it mimics the behavior of glass.

The model is a colloidial fluid, a liquid with tiny particles, or colloids, suspended evenly in it. Milk, for example, is a familiar colloidial fluid. Scientists model solidifying glasses using colloids by adding more particles to the fluid. This increases the particles' concentration, making the fluid thicker, and making it flow more slowly. The advantage of this approach to studying glasses directly is size, Weitz said. The colloid particles are 1,000 times bigger than a molecule of a glass and can be observed with a microscope.

"They're big; they're slow. They get slower and slower and slower and slower," Weitz said. "They don't behave like a fluid. They don't behave like a crystal. They behave in many ways like a glass."

The problem with traditional colloids used in these models, however, is that they often rapidly solidify past a certain point, unlike most glasses, which continue to flow ever more slowly as they gradually solidify. Weitz and colleagues created a colloid that behaves more like a glass in that way by using soft, compressible particles in the colloid instead of hard ones. This makes the particles squeeze together as more particles are added, making them flow more slowly, but delaying the point at which it solidifies, giving it a more glasslike behavior.

By varying the colloidal particles' stiffness, researchers can vary the colloidal behavior and improve the model's faithfulness to various glasses.

"There's this wealth of behavior in molecular glass and we never saw this wealth of behavior in colloid particles," Weitz said. "The fact you can visualize things gives you tremendous insight you can't get with molecular glass."

Weitz's co-authors are Johan Mattsson, Hans M. Wyss, and Alberto Fernandez-Nieves of Harvard's Department of Physics and School of Engineering and Applied Sciences; Kunimasa Miyazaki and David R. Reichman of Columbia University; and Zhibing Hu of the University of North Texas. Their work was funded by the National Science Foundation, Harvard's Materials Research Science and Engineering Center, the Hans Werthén Foundation, the Wenner-Gren Foundation, the Knut and Alice Wallenberg Foundation and the Royal Society of Arts and Sciences in Göteborg, the Ministerio de Ciencia e Innovación and the University of Almeria, and KAKENHI.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Materials Scientists Find Better Model For Glass Creation." ScienceDaily. ScienceDaily, 6 November 2009. <www.sciencedaily.com/releases/2009/11/091104132819.htm>.
Harvard University. (2009, November 6). Materials Scientists Find Better Model For Glass Creation. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2009/11/091104132819.htm
Harvard University. "Materials Scientists Find Better Model For Glass Creation." ScienceDaily. www.sciencedaily.com/releases/2009/11/091104132819.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins