Featured Research

from universities, journals, and other organizations

Past Climate Of Northern Antarctic Peninsular Informs Global Warming Debate

Date:
November 9, 2009
Source:
National Oceanography Centre, Southampton (UK)
Summary:
The seriousness of current global warming is underlined by a reconstruction of climate at Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula over approximately the last 14,000 years, which appears to show that the current warming and widespread loss of glacial ice are unprecedented.

The American icebreaker RV/IB Nathanial B. Palmer is shown off the South Shetland Islands. The drilling rig is clearly seen on the rear deck.
Credit: S. Bohaty

The seriousness of current global warming is underlined by a reconstruction of climate at Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula over approximately the last 14,000 years, which appears to show that the current warming and widespread loss of glacial ice are unprecedented.

Related Articles


"At no time during the last 14 thousand years was there a period of climate warming and loss of ice as large and regionally synchronous as that we are now witnessing in the Antarctic Peninsula," says team member Dr Steve Bohaty of the National Oceanography Centre, Southampton (NOCS), home of the University of Southampton's School of Ocean and Earth Science (SOES)."

The findings are based on a detailed analysis of the thickest Holocene sediment core yet drilled in the Antarctic Peninsula. "By studying the climate history of the past and identifying causes of these changes, we are better placed to evaluate current climate change and its impacts in the Antarctic," says Dr Bohaty.

As part of a 2005 research cruise aboard the American icebreaker RV/IB Nathanial B. Palmer, the scientists drilled down through the sediments at Maxwell Bay, a fjord at the northwest tip of the Antarctic Peninsula. They drilled down as far as the bedrock, obtaining a nearly complete 108.3-metre sediment core.

Back in the lab, they performed a battery of detailed sedimentological and geochemical analyses on the core. Radiocarbon dating showed that the oldest sediments at the bottom of the core were deposited between 14.1 and 14.8 thousand years ago, and sedimentation rates at the site varied from 0.7 to around 30 milimetres a year through the Holocene; that is, the geological period that began around 11,700 years ago, continuing to the present.

They conclude that ice was grounded in the fjord during the Last Glacial Maximum -- the height of the last ice age -- and eroded older sediments from the fjord. Later, the grounded ice retreated, leaving a permanent floating ice canopy.

The evidence points to a period of rapid glacial retreat from 10.1 to 8.2 thousand years ago, followed by a period of reduced sea-ice cover and warm water conditions occurring between 8.2 and 5.9 thousand years ago. An important finding of the study is that the mid-Holocene warming interval does not appear to have occurred synchronously throughout the region, and its timing and duration was most likely influenced at different sites by local oceanographic controls, as well as physical geography.

Following the mid-Holocene warming interval, the climate gradually cooled over the next three thousand years or so, resulting in more extensive sea-ice cover in the bay. But the researchers find no evidence that the ice advanced in Maxwell Bay during the so-called Little Ice Age in the sixteenth to mid-nineteenth century.

The Antarctic Peninsula area has warmed 3 C in the past five decades, with increased rainfall and a widespread retreat of glaciers. "Atmospheric warming trends linked to global climate change are an obvious culprit for the observed regional climate changes," say the researchers.

The study was supported by the US National Science Foundation Office of Polar Programs.

The authors are: K. T. Milliken and J. B. Anderson (Rice University), J.S. Wellner (University of Houston), S.M. Bohaty (NOCS/SOES) and P.L. Manley (Middlebury College, Vermont).


Story Source:

The above story is based on materials provided by National Oceanography Centre, Southampton (UK). Note: Materials may be edited for content and length.


Journal Reference:

  1. Milliken et al. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geological Society of America Bulletin, 2009; 121 (11-12): 1711 DOI: 10.1130/B26478.1

Cite This Page:

National Oceanography Centre, Southampton (UK). "Past Climate Of Northern Antarctic Peninsular Informs Global Warming Debate." ScienceDaily. ScienceDaily, 9 November 2009. <www.sciencedaily.com/releases/2009/11/091106095636.htm>.
National Oceanography Centre, Southampton (UK). (2009, November 9). Past Climate Of Northern Antarctic Peninsular Informs Global Warming Debate. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2009/11/091106095636.htm
National Oceanography Centre, Southampton (UK). "Past Climate Of Northern Antarctic Peninsular Informs Global Warming Debate." ScienceDaily. www.sciencedaily.com/releases/2009/11/091106095636.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins