Featured Research

from universities, journals, and other organizations

New mechanism explains how the body prevents formation of blood vessels

Date:
November 14, 2009
Source:
Uppsala University
Summary:
Researchers have identified an entirely new mechanism by which a specific protein in the body inhibits formation of new blood vessels. Inhibiting the formation of new blood vessels is an important aspect of, for example, cancer treatment.

Researchers at Uppsala University, in collaboration with colleagues in Sweden and abroad, have identified an entirely new mechanism by which a specific protein in the body inhibits formation of new blood vessels. Inhibiting the formation of new blood vessels is an important aspect of, for example, cancer treatment. The study is published in the November issue of the journal Molecular Cancer Research.

Related Articles


Angiogenesis, the formation of new blood vessels, is strictly regulated by a number of molecules that serve to either promote or inhibit the process. Certain diseases are characterised by excessive or insufficient angiogenesis. The rapid growth of tumors, for example, is conditioned on the formation of new blood vessels to supply oxygen and nutrients, which explains why angiogenesis is accelerated in cancer patients.

"At present, there are five approved drugs for inhibiting formation of new blood vessels," says research fellow Anna-Karin Olsson of the Department of Medical Biochemistry and Microbiology at Uppsala University, who headed the study. "All of these medications work in a similar way, by influencing the function of one of the agents that promotes angiogenesis. A problem with the medications is that the body develops resistance to them as treatment progresses. Improved knowledge about which molecules promote or inhibit the formation of blood vessels in the body, and the mechanisms by which they operate, is accordingly a research goal."

The study in question involved researchers from Uppsala University collaborating with colleagues in Sweden, Norway, Finland and Germany to investigate the function of histidine-rich glycoprotein (HRG), a plasma protein naturally present in the body. Previous studies involving mice had shown that HRG inhibits angiogenesis and tumor growth. The new study demonstrates, among other things, that the HRG fragment responsible for the inhibitory effect is present in human tissue, which suggests that it serves as one of the body's own angiogenesis inhibitors.

The HRG fragment in question inhibits angiogenesis by binding to endothelial cells, which participate in the formation of blood vessels. Analysis of a large number of human tissue samples allowed the researchers to determine that the HRG fragment binds to blood vessels in cancer patients but not in healthy persons. The study also showed that the HRG fragment binds to blood vessels in the presence of activated platelets, blood cells that limit bleeding in the event of injury. This finding is interesting in view of the fact that cancer patients often exhibit high levels of platelet activation.

"Our findings suggest that attempting to inhibit angiogenesis is an aspect of the body's own reaction to diseases like cancer," says Anna-Karin Olsson. "The activated platelets create a microenvironment in which the HRG fragment is able to function as an angiogenesis inhibitor."

Data from so-called "knockout" mice, which lack HRG, support this conclusion. The mice are healthy and fertile, but exhibit high levels of angiogenesis in connection with tumor growth. This finding is consistent with the hypothesis that the mice lack an angiogenesis inhibitor.

"Our data describes an entirely new mechanism of action for an endogenous angiogenesis inhibitor," says Anna-Karin Olsson. "This knowledge may eventually help in developing new, more effective drugs for inhibiting angiogenesis during disease treatment without affecting healthy vessels."


Story Source:

The above story is based on materials provided by Uppsala University. Note: Materials may be edited for content and length.


Cite This Page:

Uppsala University. "New mechanism explains how the body prevents formation of blood vessels." ScienceDaily. ScienceDaily, 14 November 2009. <www.sciencedaily.com/releases/2009/11/091111092043.htm>.
Uppsala University. (2009, November 14). New mechanism explains how the body prevents formation of blood vessels. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2009/11/091111092043.htm
Uppsala University. "New mechanism explains how the body prevents formation of blood vessels." ScienceDaily. www.sciencedaily.com/releases/2009/11/091111092043.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Calif. Health Officials Campaign Against E-Cigarettes

Calif. Health Officials Campaign Against E-Cigarettes

Newsy (Jan. 29, 2015) The California Health Department says e-cigarettes are a public health risk for both smokers and those who inhale e-cig smoke secondhand. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins