Featured Research

from universities, journals, and other organizations

New insights into the physiology of cockroaches

Date:
November 16, 2009
Source:
Public Library of Science
Summary:
Scientists have shed new light on how the cockroach organism works. They have shown why the German cockroach (Blatella germanica) eliminates excess nitrogen by excreting ammonia, in contrast to most terrestrial insects that commonly produce uric acid as a waste compound.

Cockroach. A study by scientists from the University of Valencia sheds new light on how the cockroach organism works.
Credit: iStockphoto

A study by scientists from the University of Valencia sheds new light on how the cockroach organism works. A research team from the Cavanilles Institute for Biodiversity and Evolutionary Biology, led by professors Amparo Latorre and Andrιs Moya, has shown why the German cockroach (Blatella germanica) eliminates excess nitrogen by excreting ammonia, in contrast to most terrestrial insects that commonly produce uric acid as a waste compound. The research is published November 13 in the open-access journal PLoS Genetics.

The biochemical explanation of nitrogen secretion as ammonia in cockroaches, something that has puzzled insect physiologists for years, was determined from the whole genome sequence of the German cockroach's bacterial endosymbiont -- Blattabacterium strain Bge, a bacterium living within cockroach cells -- and the inference of its metabolic network. In order to produce ammonia "the bacterial metabolism employs an apparently inefficient mechanism: bacterial enzymes simultaneously synthesize, by an energetically expensive pathway, and destroy the same molecule, urea," explains Amparo Latorre of the University of Valencia. The authors point out that this surprising mechanism makes sense when considering the metabolic interaction between endosymbiont bacteria and their host and the whole physiology of the cockroach.

This research also suggests an evolutionary convergence at the level of biochemical functions in the cockroach and other omnivorous insects. The scientists analyzed endosymbiont genomes from the German cockroach and two species of ants (Blochmannia floridanus and B. pennsylvanicus) and compared them to endosymbiont genomes from other insects with very specialized diets, such as aphids. These studies show that, by completely independent evolutionary pathways and most likely due to their omnivorous habits, cockroaches and ants have arrived at remarkably similar metabolic solutions through their old associations with endosymbionts belonging to very distant bacterial lineages.

Latorre concludes that "a better knowledge of the evolutionary mechanisms behind the symbiotic associations between insect and bacteria is necessary not only to understand the basic physiology and behaviour of the host, but also to design new strategies in pest control".


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lσpez-Sαnchez et al. Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica. PLoS Genetics, 2009; 5 (11): e1000721 DOI: 10.1371/journal.pgen.1000721

Cite This Page:

Public Library of Science. "New insights into the physiology of cockroaches." ScienceDaily. ScienceDaily, 16 November 2009. <www.sciencedaily.com/releases/2009/11/091113083311.htm>.
Public Library of Science. (2009, November 16). New insights into the physiology of cockroaches. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/11/091113083311.htm
Public Library of Science. "New insights into the physiology of cockroaches." ScienceDaily. www.sciencedaily.com/releases/2009/11/091113083311.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) — Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) — The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) — Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins