Featured Research

from universities, journals, and other organizations

Bacterial 'ropes' tie down shifting Southwest

Date:
November 17, 2009
Source:
Arizona State University
Summary:
Researchers have discovered that several species of microbes, at least one found prominently in the deserts of the Southwest, have evolved the trait of rope-building to lasso shifting soil substrates.

Sandy desert soil from the Colorado Plateau is colonized by pioneering Microcoleus vaginatus (left). This is a microscopic view of ropes built in culture by Microcoleus chthonoplastes from a marine intertidal mat (right).
Credit: Arizona State University

Researchers from Arizona State University have discovered that several species of microbes (cyanobacteria), at least one found prominently in the deserts of the Southwest, have evolved the trait of rope-building to lasso shifting soil substrates.

These tiny filamentous cyanobacteria are typically found in the environment as multicellular single strands or threads. Though known as pioneers in the biostabilization of soils, scientists have long puzzled over the factors that control and promote the twisting of some species' individual threads into thick cords sometimes inches in length.

Ferran Garcia-Pichel and Martin Wojciechowski, researchers in ASU's School of Life Sciences in the College of Liberal Arts and Sciences, examined genetic markers of rope-makers, relating them to shear stress, soil particle size and friction velocity (linked to erosion) to develop an understanding about the relationship between bacterial behavior, evolutionary fitness and environmental effectors.

The results of their study, published Nov. 17 in the journal Public Library of Science (PLoS) ONE, revealed that rope-building cyanobacteria, typically found in fine, sandy desert soils, marine subtidal stromatolites and coastal sand flats, are able, because of their larger size, to hog-tie sand grains and resist eroding wind and fluid at velocities that would typically wash away their thread-like relatives.

"While forming thick ropes seems to have apparent disadvantages, such as limiting access to light or nutrients, bundling-up actually turns out to be, literally, like throwing your neighbor a life-line," Garcia-Pichel says.

Wojciechowski adds: "These microbes rope-building attributes have added to their success as the true Western pioneers."

Garcia-Pichel believes that it was environmental effectors that led to the selection of genetic traits to promote rope-building. Phylogenetic analyses performed by the researchers have further shown that the evolution of the trait occurred separately in three different genera; an example of convergent evolution, rather than a tie to a single common rope-building ancestor.

In the desert, the initial stabilization of topsoil by rope-builders promotes colonization by a multitude of other microbes. From their interwoven relationships arise complex communities known as "biological soil crusts," important ecological components in the fertility and sustainability of arid ecosystems.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ferran Garcia-Pichel, Martin F. Wojciechowski. The Evolution of a Capacity to Build Supra-Cellular Ropes Enabled Filamentous Cyanobacteria to Colonize Highly Erodible Substrates. PLoS ONE, 2009; DOI: 10.1371/journal.pone.0007801

Cite This Page:

Arizona State University. "Bacterial 'ropes' tie down shifting Southwest." ScienceDaily. ScienceDaily, 17 November 2009. <www.sciencedaily.com/releases/2009/11/091116203140.htm>.
Arizona State University. (2009, November 17). Bacterial 'ropes' tie down shifting Southwest. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2009/11/091116203140.htm
Arizona State University. "Bacterial 'ropes' tie down shifting Southwest." ScienceDaily. www.sciencedaily.com/releases/2009/11/091116203140.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins