Featured Research

from universities, journals, and other organizations

Cross-country runabouts: immune cells on the move

Date:
November 25, 2009
Source:
Max-Planck-Gesellschaft
Summary:
In order to effectively fight pathogens, even at remote areas of the human body, immune cells have to move quickly and in a flexible manner. Scientists have now deciphered the mechanism that illustrates how these mobile cells move on diverse surfaces.

An immune cell paves its way and thus, forms finger-like extensions. Marked in colour is the skeleton of the cell.
Credit: Max Planck Institute of Biochemistry / Michael Sixt

In order to effectively fight pathogens, even at remote areas of the human body, immune cells have to move quickly and in a flexible manner

Scientists from the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now deciphered the mechanism that illustrates how these mobile cells move on diverse surfaces. "Similar to a car, these cells have an engine, a clutch and wheels which provide the necessary friction," explains Michael Sixt, a research group leader at the MPI of Biochemistry. The results, which were developed in cooperation with colleagues from the MPI for Metals Research in Stuttgart, Germany, have now been published in Nature Cell Biology.

White blood cells, also called leukocytes or immune cells, fight infections in the human body in many different ways. As defence cells, they are able to invade infected tissues, detect and eliminate pathogens. Also foreign structures and wreckage of the body's own cells are disposed of with their help. To cope with these tasks, the cells move a hundred fold faster than other cell types. Thereby, immune cells follow certain attractants which are released by the body's own cells or the pathogens.

Energy transfer on a molecular level

Cells have to generate the necessary energy from the inside in order to move forward. This task is carried out by the cytoskeleton, a network of proteins which stretches through the cell's complete interior. It can expand and form finger-like extensions and likewise retract them.

However, this deformation is not enough to make a cell move. "Similar to a car, the energy has to be transferred onto the street," says Dr. Sixt. "We need a clutch and wheels." For this purpose, every cell carries special cell anchors on their surface: the integrins. These proteins span the envelope of the cells and are directly connected to the cell's cytoskeleton. On the outside, these anchors can stick to other cells and tissues and thus form a connection to the outside world. "The connection between the cytoskeleton and the integrin matches the clutch, the connection between the integrin and the outside world corresponds to the grasp of the wheels." says Dr. Sixt.

Immune cells are cross-country capable

In doing so, immune cells are not rigid and inflexible. According to the scientists, they are able to adjust to every possible substrate. "Our analysis has shown that leukocytes always move with the same speed -- no matter whether they migrate over a slippery or rough substrate," Dr. Sixt points out. That is possible due to the tight interaction between motor, clutch and wheels. When the cell's anchors do not grip properly, the cell increases the speed of its engine -- the cytoskeleton deforms faster. Thus, the speed of the cell stays the constant. Leukocytes are also able to overcome locally occurring unevenness. Should the immune cell move with one half over slippery and with the other on rough ground, the cytoskeleton adjusts locally -- similar to a differential gear. "Thus, the direction of movement is defined only by the attractant," explains the physician. "And this attractant limits itself as little as the leukocyte with regard to tissue frontiers and unevenness of the substrate.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Renkawitz, K. Schumann, M. Weber, T. Lδmmermann, H. Pflicke, M. Piel, J. Polleux, J. P. Spatz, M. Sixt. Adaptive force transmission in amoeboid cell migration. Nature Cell Biology, 2009; DOI: 10.1038/ncb1992

Cite This Page:

Max-Planck-Gesellschaft. "Cross-country runabouts: immune cells on the move." ScienceDaily. ScienceDaily, 25 November 2009. <www.sciencedaily.com/releases/2009/11/091117094844.htm>.
Max-Planck-Gesellschaft. (2009, November 25). Cross-country runabouts: immune cells on the move. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2009/11/091117094844.htm
Max-Planck-Gesellschaft. "Cross-country runabouts: immune cells on the move." ScienceDaily. www.sciencedaily.com/releases/2009/11/091117094844.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) — Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) — New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins