Featured Research

from universities, journals, and other organizations

Spinal cord injuries: Experimental drug may restore function of nerves

Date:
November 20, 2009
Source:
Purdue University
Summary:
Researchers have shown how an experimental drug might restore the function of nerves damaged in spinal cord injuries by preventing short circuits caused when tiny "potassium channels" in the fibers are exposed.

Researchers have shown how an experimental drug might restore the function of nerves damaged in spinal cord injuries by preventing short circuits caused when tiny "potassium channels" in the fibers are exposed by trauma. The compound also might be developed as a treatment for multiple sclerosis. This diagram illustrates how the drug functions as a "channel blocker," meaning it permits the conduction of signals even though the protective myelin insulation has been damaged.
Credit: Purdue University, Department of Basic Medical Sciences

Researchers have shown how an experimental drug might restore the function of nerves damaged in spinal cord injuries by preventing short circuits caused when tiny "potassium channels" in the fibers are exposed.

Related Articles


The chemical compound also might be developed as a treatment for multiple sclerosis.

Because nerves usually are not severed in a common type of spinal cord trauma, called "compression" injuries, the drug offers hope as a possible treatment, said Riyi Shi, a professor in Purdue University's Department of Basic Medical Sciences, School of Veterinary Medicine, Center for Paralysis Research and Weldon School of Biomedical Engineering.

"Compression is responsible for most spinal cord injuries, including many resulting in paralysis," Shi said. "Since the nerves are not severed, this type of drug represents a potential golden opportunity to treat spinal cord injuries."

The experimental compound, 4-aminopyridine-3-methyl hydroxide, has been shown to restore function to damaged axons, slender fibers that extend from nerve cells and transmit electrical impulses in the spinal cord.

Findings, based on experiments with guinea pig spinal cord tissue, appeared online on November 18 in the Journal of Neurophysiology. The work was led by Department of Basic Medical Sciences doctoral student Wenjing Sun.

Shi said the findings were made possible by the interdisciplinary nature of the work, which also involves researchers Richard Borgens, director of Purdue's Center for Paralysis Research and the Mari Hulman George Professor of Neurology in the School of Veterinary Medicine; Stephen Byrn, the Charles B. Jordan Professor of Medicinal Chemistry, and Daniel Smith, a research assistant professor, both in the Department of Industrial and Physical Pharmacy; and Ji-Xin Cheng, an associate professor in the Weldon School of Biomedical Engineering and Department of Chemistry.

The researchers subjected spinal cord tissue to stresses that mimic what happens in a compression injury, which stretches nerves. Then they treated the damaged axons with 4-aminopyridine-3-methyl hydroxide.

The compound is a derivative of the drug 4-aminopyridine, used primarily as a research tool and also to manage symptoms of multiple sclerosis.

The axons of each nerve are sheathed in a thick insulating lipid layer, called myelin, which enables the transmission of signals without short circuiting, much like the insulation surrounding electrical wires. Spinal cord trauma damages the myelin sheath, exposing "fast potassium channels" that are embedded in the axons and are critical for transmitting nerve impulses.

The researchers confirmed previous circumstantial evidence suggesting injury causes the myelin insulation to recede, exposing the channels and impairing signal transmission. Laboratory and imaging techniques revealed the exposed channels in damaged axons.

The researchers also discovered that 4-aminopyridine-3-methyl hydroxide is a "potassium channel blocker," using a sophistic laboratory technique called "patch clamp" to measure signal conduction. Findings confirmed that the compound prevents the exposed channels from leaking electrical current and enhances nerve conduction in segments of the damaged spinal cord.

The compound could make it possible to sidestep spinal cord damage by enabling axons to transmit signals as though they were still sheathed in myelin, Shi said.

Nerves transmit signals through a series of rapid electrical pulses, or "action potentials." For proper nerve function, the time gap between pulses must be as brief as possible. However, 4-aminopyridine has been shown to lengthen the gap, or "refractory period," between pulses. The researchers found that 4-aminopyridine-3-methyl hydroxide restores function without affecting the refractory period. As a result, the damaged nerves perform more like healthy nerves than those treated with other drugs, he said.

Another key advantage of the new compound is that it's about 10 times more potent than 4-aminopyridine, meaning lower doses can be used to reduce the likelihood of serious side effects.

Because myelin also is damaged in multiple sclerosis, the same drug might be used to restore nerve function in people stricken with the disease, Shi said. Since the newer drug can be used in lower doses, it might be more effective than 4-aminopyridine in treating multiple sclerosis, which affects more than 350,000 people in the United States and 2 million worldwide, he said.

The research has been funded by the Purdue Research Foundation and the National Institutes of Health.

The Journal of Neurophysiology paper was written by Sun, doctoral student Yan Fu in the School of Biomedical Engineering, Smith, Cheng, Byrn, Borgens and Shi.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sun et al. A novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. Journal of Neurophysiology, 2009; DOI: 10.1152/jn.00154.2009

Cite This Page:

Purdue University. "Spinal cord injuries: Experimental drug may restore function of nerves." ScienceDaily. ScienceDaily, 20 November 2009. <www.sciencedaily.com/releases/2009/11/091119135640.htm>.
Purdue University. (2009, November 20). Spinal cord injuries: Experimental drug may restore function of nerves. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2009/11/091119135640.htm
Purdue University. "Spinal cord injuries: Experimental drug may restore function of nerves." ScienceDaily. www.sciencedaily.com/releases/2009/11/091119135640.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Despite Rising Death Toll, Many Survive Ebola

Despite Rising Death Toll, Many Survive Ebola

AP (Oct. 23, 2014) The family of a Dallas nurse infected with Ebola in the US says doctors can no longer detect the virus in her. Despite the mounting death toll in West Africa, there are survivors there too. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins