Featured Research

from universities, journals, and other organizations

Using new technique, scientists find eleven times more aftershocks for 2004 quake

Date:
November 24, 2009
Source:
Georgia Institute of Technology
Summary:
Using a technique normally used for detecting weak tremor, scientists have discovered that the 2004 magnitude 6 earthquake along the Parkfield section of the San Andreas fault exhibited almost 11 times more aftershocks than previously thought.

Using a technique normally used for detecting weak tremors, scientists at the Georgia Institute of Technology discovered that the 2004 magnitude 6 earthquake along the Parkfield section of the San Andreas fault exhibited almost 11 times more aftershocks than previously thought.

The research appears online in Nature Geoscience and will appear in print in a forthcoming edition.

"We found almost 11 times more events in the first three days after the main event. That's surprising because this is a well-instrumented place and almost 90 percent of the activity was not being determined or reported," said Zhigang Peng, assistant professor at Georgia Tech's School of Earth and Atmospheric Sciences.

In examining how these aftershocks occurred, Peng and graduate research assistant Peng Zhao discovered that the earliest aftershocks occurred in the region near the main event. Then with time, the aftershocks started migrating. Seeing how the aftershocks move from the center of the quake outward lends credence to the idea that it's the result of the fault creeping, said Peng.

"Basically, the big event happens due to sudden fault movement, but the fault doesn't stop after the main event. It continues to move because the stress has been perturbed and the fault is trying to adjust itself. We believe this so-called fault creep is causing most of the aftershocks," he said.

Peng and Zhao used a method known as the matched filter technique, rather than the standard technique to examine the aftershocks. The traditional way of determining a location of an earthquake is that a human analyst has to go through each seismic recording, determine the order of events and their location. This takes time and if there are many events, or if some of them occur at the same time, it's hard for the analyst to figure out which came first.

"Because of these difficulties, only the largest aftershocks are located, with many small ones missing. So, we used the matched filter technique because it allows us to use a computer to automatically scan the seismic records to detect events when their patterns are similar. There is no need to manually pick out the aftershocks after the mainshock," said Peng.

The team chose the 2004 Parkfield quake to test the matched filter technique because the quake is on the San Andreas fault. The San Andreas is one of the most heavily instrumented places in the world, owing to the famous Parkfield, California, earthquake prediction experiment in the 1980s.

Peng is currently using the matched filter technique to work with several other research groups to detect early aftershocks of recent large earthquakes in Japan and China.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute of Technology. "Using new technique, scientists find eleven times more aftershocks for 2004 quake." ScienceDaily. ScienceDaily, 24 November 2009. <www.sciencedaily.com/releases/2009/11/091123114644.htm>.
Georgia Institute of Technology. (2009, November 24). Using new technique, scientists find eleven times more aftershocks for 2004 quake. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2009/11/091123114644.htm
Georgia Institute of Technology. "Using new technique, scientists find eleven times more aftershocks for 2004 quake." ScienceDaily. www.sciencedaily.com/releases/2009/11/091123114644.htm (accessed September 22, 2014).

Share This



More Earth & Climate News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

Hundreds of Thousands Hit NYC Streets to Protest Climate Change

AFP (Sep. 22, 2014) Celebrities, political leaders and the masses rallied in New York and across the globe demanding urgent action on climate change, with organizers saying 600,000 people hit the streets. Duration: 01:19 Video provided by AFP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Washed-Up 'Alien Hairballs' Are Actually Algae

Washed-Up 'Alien Hairballs' Are Actually Algae

Newsy (Sep. 22, 2014) Green balls of algae washed up on Sydney, Australia's Dee Why Beach. Video provided by Newsy
Powered by NewsLook.com
Was The Biggest Climate March In History Underreported?

Was The Biggest Climate March In History Underreported?

Newsy (Sep. 22, 2014) The People's Climate March in New York City drew more than 300,000 people, possibly a record-breaking number. Was the march underreported? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins