Featured Research

from universities, journals, and other organizations

High-tech origami: Water droplets direct self-assembly process in thin-film materials

Date:
November 25, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers have developed a technique for fabricating 3-D, single-crystalline silicon structures from thin films by coupling photolithography and a self-folding process driven by capillary interactions.

Spherical solar cells self-assembled from flower shaped flat Si leaflets with thicknesses of 2 μm: (A) Schematic illustration of steps for fabricating a spherical shaped Si solar cell; (B) Optical image of a complete device consisting of the folded spherical Si shell, inner glass bead, and printed silver electrodes; (C) Magnified view of the silver wire connected to the top contact of the spherical device; (D) Current density (J) - voltage (V) characteristics of a spherical solar cell under AM1.5 simulated sunlight irradiation, with and without a white diffuse reflector.
Credit: Photo courtesy of Ralph Nuzzo

You can think of it as origami -- very high-tech origami.

Related Articles


Researchers at the University of Illinois have developed a technique for fabricating three-dimensional, single-crystalline silicon structures from thin films by coupling photolithography and a self-folding process driven by capillary interactions.

The films, only a few microns thick, offer mechanical bendability that is not possible with thicker pieces of the same material.

"This is a completely different approach to making three-dimensional structures," said Ralph G. Nuzzo, the G. L. Clark Professor of Chemistry at Illinois. "We are opening a new window into what can be done in self-assembly processes."

Nuzzo is corresponding author of a paper accepted for publication in the Proceedings of the National Academy of Sciences. The paper is to be posted on the journal's Early Edition Web site the week of November 23.

As a demonstration of the new capillary-driven, self-assembly process, Nuzzo and colleagues constructed spherical and cylindrical shaped silicon solar cells and evaluated their performance.

The researchers also developed a predictive model that takes into account the type of thin film to be used, the film's mechanical properties and the desired structural shape.

"The model identifies the critical conditions for self-folding of different geometric shapes," said mechanical science and engineering professor K. Jimmy Hsia. "Using the model, we can improve the folding process, select the best material to achieve certain goals, and predict how the structure will behave for a given material, thickness and shape."

To fabricate their free-standing solar cells, the researchers began by using photolithography to define the desired geometric shape on a thin film of single-crystalline silicon, which was mounted on a thicker, insulated silicon wafer. Next, they removed the exposed silicon with etchant, undercut the remaining silicon foil with acid, and released the foil from the wafer. Then they placed a tiny drop of water at the center of the foil pattern.

As the water evaporated, capillary forces pulled the edges of the foil together, causing the foil to wrap around the water droplet.

To retain the desired shape after the water had fully evaporated, the researchers placed a tiny piece of glass, coated with an adhesive, at the center of the foil pattern. The glass "froze" the three-dimensional structure in place, once it had reached the desired folded state.

"The resulting photovoltaic structures, not yet optimized for electrical performance, offer a promising approach for efficiently harvesting solar energy with thin films," said Jennifer A. Lewis, the Thurnauer Professor of Materials Science and Engineering and director of the university's Frederick Seitz Materials Research Laboratory.

Unlike conventional, flat solar cells, the curved, three-dimensional structures also serve as passive tracking optics by absorbing light from nearly all directions.

"We can look forward from this benchmark demonstration to photovoltaic structures made from thin films that behave as though they are optically dense, and much more efficient," Lewis said.

The new self-assembly process can be applied to a variety of thin-film materials, not just silicon, the researchers noted in their paper.

With Nuzzo, Hsia and Lewis, co-authors of the paper are graduate students Xiaoying Guo and Huan Li, and postdoctoral researchers Bok Yeop Ahn and Eric B. Douss.

Hsia is associate dean of the Graduate College and is affiliated with the university's Micro and Nanotechnology Laboratory.

Lewis is affiliated with the department of chemical and biomolecular engineering and the Micro and Nanotechnology Laboratory.

Nuzzo is affiliated with the Institute for Genomic Biology, the Micro and Nanotechnology Laboratory, the materials science and engineering department, and the Frederick Seitz Materials Research Laboratory.

The U.S. Defense Advanced Research Projects Agency, the Department of Energy and the National Science Foundation funded the work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "High-tech origami: Water droplets direct self-assembly process in thin-film materials." ScienceDaily. ScienceDaily, 25 November 2009. <www.sciencedaily.com/releases/2009/11/091123152222.htm>.
University of Illinois at Urbana-Champaign. (2009, November 25). High-tech origami: Water droplets direct self-assembly process in thin-film materials. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/11/091123152222.htm
University of Illinois at Urbana-Champaign. "High-tech origami: Water droplets direct self-assembly process in thin-film materials." ScienceDaily. www.sciencedaily.com/releases/2009/11/091123152222.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins