Featured Research

from universities, journals, and other organizations

Spinons -- confined like quarks: Phenomenon seen in condensed matter for first time

Date:
November 30, 2009
Source:
Helmholtz Association of German Research Centres
Summary:
The concept of confinement is one of the central ideas in modern physics. The most famous example is that of quarks which bind together to form protons and neutrons. Now for the first time an experimental realization and a proof of confinement phenomenon has been observed in a condensed matter system. The finding, in a well-described magnetic system, may offer new ways to explore quantum chromodynamics, the theory that describes the fundamental interactions of quarks.

Alexei Tsevelik.
Credit: Brookhaven National Laboratory

The concept of confinement is one of the central ideas in modern physics. The most famous example is that of quarks which bind together to form protons and neutrons. Now Prof. Bella Lake from Helmholtz-Zentrum Berlin together with an international team of scientists report for the first time an experimental realization and a proof of confinement phenomenon observed in a condensed matter system.

The concept of confinement states that in certain systems the constituent particles are bound together by an interaction whose strength increases with increasing particle separation. In the case of quarks they are held together by the so called strong force, a force that grows stronger with increasing distance. As a consequence individual particles like quarks don't exist in a free state and their properties can be observed only indirectly. In the 1990s Prof Alexei Tsvelik from Brookhaven National Laboratory (USA) and co-workers predicted an analogous confinement process in systems known as spin-ladders found in condensed matter physics. Experimental confirmation of this phenomenon has however only been achieved recently as described by Bella Lake et al in the current issue of the journal Nature Physics.

The most famous example of confinement is of quarks which are held together in protons and neutrons, for example, by the strong force, a force that grows stronger with increasing distance.

"It has been interesting for us that a similar situation of confinement can be modeled in condensed matter systems," Alexei M.Tsvelik of the Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, said. "Instead of quarks being confined in protons and neutrons, we have other quantum entities that act just like particles -- elementary excitations of magnetic systems called spinons."

In the case of the current experiment, the spinons exist on parallel chains of copper-oxide separated by inert calcium. Spinons on individual chains are not confined, but as soon as two chains are brought together to form ladder-like arrangements, the inter-ladder interactions confine the spinons.

Spin-ladders consist of two chains of copper oxide chemically bonded together. This makes the electrons interact strongly with each other. A remarkable feature of a single chain is that the individual electrons, which behave as an elementary charge combined with magnetic spin, co-operate in concert to separate into independent spin and charge parts. According to Bella Lake "The spin parts, known as spinons, have different properties to those of the original electrons. In fact they are analogous to quarks, the building blocks of protons and neutrons." On coupling two chains together to form a spin ladder the spin parts are found to recombine, but in a new way. "We have found, that excitations of individual chains, so called spinons, are confined in a similar way to that in which elementary quarks are held together," Bella Lake said.

The team of scientists have found evidence for the confinement idea by neutron scattering experiments on magnetic crystals of calcium cuprate (a copper-oxide material synthesized at the Leibniz Institute for Solid State and materials research in Dresden). The neutron experiments were performed using the MAPS spectrometer at the ISIS pulsed neutron source at Rutherford Appleton Laboratory, UK. Further the crystal and magnetic structure were investigated from neutron data collected on the E5 instrument at the research reactor BER II in Berlin.

The neutron scattering data show that the electrons essentially first split into spins and charges on the chains, then the spinons pair up again due to ladder effects. Prof Alan Tennant, the head of "Institute Complex Magnetic Materials" at HZB, explained: "The geometry of the ladder in fact plays a special role: the spinons always appear in pairs and when they move apart, they force a reorganisation of the intervening electrons that costs energy. The energy cost grows with separation -- like a rubber band." According to Bella Lake "This strong pairing up of two spinons is like quarks binding together to form subatomic particles like hadrons and mesons."

Prof Alexei Tsvelik who developed the theoretical description explained "The formation of hadrons is well established on a qualitative level, but its quantitative aspects remain unresolved. It is unknown how to relate the theoretical parameters to the observed hadron masses. This is one of the reasons why condensed matter analogues are interesting. They provide examples of confinement for which detailed descriptions have been achieved.

The finding, in a well-described magnetic system, may offer new ways to explore quantum chromodynamics, the theory that describes the fundamental interactions of quarks.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bella Lake, Alexei M. Tsvelik, Susanne Notbohm, D. Alan Tennant, Toby G. Perring, Manfred Reehuis, Chinnathambi Sekar, Gernot Krabbes & Bernd Bόchner. Confinement of fractional quantum number particles in a condensed-matter system. Nature Physics, November 29, 2009 [link]

Cite This Page:

Helmholtz Association of German Research Centres. "Spinons -- confined like quarks: Phenomenon seen in condensed matter for first time." ScienceDaily. ScienceDaily, 30 November 2009. <www.sciencedaily.com/releases/2009/11/091129153403.htm>.
Helmholtz Association of German Research Centres. (2009, November 30). Spinons -- confined like quarks: Phenomenon seen in condensed matter for first time. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2009/11/091129153403.htm
Helmholtz Association of German Research Centres. "Spinons -- confined like quarks: Phenomenon seen in condensed matter for first time." ScienceDaily. www.sciencedaily.com/releases/2009/11/091129153403.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins