Featured Research

from universities, journals, and other organizations

Model predicts dialysis patients' likelihood of survival

Date:
December 3, 2009
Source:
American Society of Nephrology
Summary:
A new model can help physicians determine if a kidney disease patient on dialysis is likely to die within the next few months. This clinical tool could help medical professionals initiate discussions with patients and their families about end-of-life care such as hospice.

A new model can help physicians determine if a kidney disease patient on dialysis is likely to die within the next few months, according to a study appearing in an upcoming issue of the (CJASN). This clinical tool could help medical professionals initiate discussions with patients and their families about end-of-life care such as hospice.

Some kidney disease patients on dialysis are very ill and long-term survival is not anticipated. Because dialysis can be tedious and cause medical complications, patients who know that they likely have only a short time to live may wish to consider alternatives such as stopping dialysis. Unfortunately, doctors have not had accurate ways to predict dialysis patients' likelihood of long-term survival.

Michael Germain, MD; Lewis Cohen, MD (Baystate Medical Center); and their colleagues designed a model to help physicians assess the likelihood of long-term survival for these very ill patients. The investigators derived their model after studying 512 kidney disease patients on dialysis. One major component of the model is a doctor's estimate of prognosis, called the "surprise question." (Would you be surprised if your patient died in the next six months?) The model also takes into consideration a patient's nutritional status, age, and additional illnesses or conditions.

Five simple factors: a 'no' answer to the surprise question, older age, decreased serum albumin, presence of dementia, and presence of peripheral vascular disease (blockage of an artery that leads to an arm or a leg), could be mathematically combined to accurately predict that a patient is unlikely to survive past six months. When comparing a patient who died within six months with one who remained alive, 87% of the time the model accurately predicted that the former patient had a higher risk of dying within that timeframe than the latter. The researchers validated their model by testing its accuracy in another 514 kidney disease patients on dialysis, where the model's predictive accuracy was only slightly lower (80%).

Discussing a kidney disease patient's likelihood of dying can help seriously ill patients and their families make informed clinical decisions: some will decide to stop dialysis and start hospice care, while others may prefer continuing vigorous treatments to prolong life as long as possible. "Terminal care is complicated and it is always preferable if decisions can be discussed in advance, goals established, and decisions reached collaboratively between patient and physician," said Dr. Germain.


Story Source:

The above story is based on materials provided by American Society of Nephrology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Predicting Six-Month Mortality in Patients Maintained with Hemodialysis. Clinical Journal of the American Society Nephrology, December 3, 2009 DOI: 10.2215/CJN.03860609

Cite This Page:

American Society of Nephrology. "Model predicts dialysis patients' likelihood of survival." ScienceDaily. ScienceDaily, 3 December 2009. <www.sciencedaily.com/releases/2009/12/091203171710.htm>.
American Society of Nephrology. (2009, December 3). Model predicts dialysis patients' likelihood of survival. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2009/12/091203171710.htm
American Society of Nephrology. "Model predicts dialysis patients' likelihood of survival." ScienceDaily. www.sciencedaily.com/releases/2009/12/091203171710.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins