Featured Research

from universities, journals, and other organizations

Model predicts dialysis patients' likelihood of survival

Date:
December 3, 2009
Source:
American Society of Nephrology
Summary:
A new model can help physicians determine if a kidney disease patient on dialysis is likely to die within the next few months. This clinical tool could help medical professionals initiate discussions with patients and their families about end-of-life care such as hospice.

A new model can help physicians determine if a kidney disease patient on dialysis is likely to die within the next few months, according to a study appearing in an upcoming issue of the (CJASN). This clinical tool could help medical professionals initiate discussions with patients and their families about end-of-life care such as hospice.

Related Articles


Some kidney disease patients on dialysis are very ill and long-term survival is not anticipated. Because dialysis can be tedious and cause medical complications, patients who know that they likely have only a short time to live may wish to consider alternatives such as stopping dialysis. Unfortunately, doctors have not had accurate ways to predict dialysis patients' likelihood of long-term survival.

Michael Germain, MD; Lewis Cohen, MD (Baystate Medical Center); and their colleagues designed a model to help physicians assess the likelihood of long-term survival for these very ill patients. The investigators derived their model after studying 512 kidney disease patients on dialysis. One major component of the model is a doctor's estimate of prognosis, called the "surprise question." (Would you be surprised if your patient died in the next six months?) The model also takes into consideration a patient's nutritional status, age, and additional illnesses or conditions.

Five simple factors: a 'no' answer to the surprise question, older age, decreased serum albumin, presence of dementia, and presence of peripheral vascular disease (blockage of an artery that leads to an arm or a leg), could be mathematically combined to accurately predict that a patient is unlikely to survive past six months. When comparing a patient who died within six months with one who remained alive, 87% of the time the model accurately predicted that the former patient had a higher risk of dying within that timeframe than the latter. The researchers validated their model by testing its accuracy in another 514 kidney disease patients on dialysis, where the model's predictive accuracy was only slightly lower (80%).

Discussing a kidney disease patient's likelihood of dying can help seriously ill patients and their families make informed clinical decisions: some will decide to stop dialysis and start hospice care, while others may prefer continuing vigorous treatments to prolong life as long as possible. "Terminal care is complicated and it is always preferable if decisions can be discussed in advance, goals established, and decisions reached collaboratively between patient and physician," said Dr. Germain.


Story Source:

The above story is based on materials provided by American Society of Nephrology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Predicting Six-Month Mortality in Patients Maintained with Hemodialysis. Clinical Journal of the American Society Nephrology, December 3, 2009 DOI: 10.2215/CJN.03860609

Cite This Page:

American Society of Nephrology. "Model predicts dialysis patients' likelihood of survival." ScienceDaily. ScienceDaily, 3 December 2009. <www.sciencedaily.com/releases/2009/12/091203171710.htm>.
American Society of Nephrology. (2009, December 3). Model predicts dialysis patients' likelihood of survival. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2009/12/091203171710.htm
American Society of Nephrology. "Model predicts dialysis patients' likelihood of survival." ScienceDaily. www.sciencedaily.com/releases/2009/12/091203171710.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins