Featured Research

from universities, journals, and other organizations

Elusive 'hot' electrons captured in ultra-thin solar cells

Date:
December 12, 2009
Source:
Boston College
Summary:
Harnessing the power of "hot" electrons for solar energy has been held as a theoretical possibility. Now researchers report observing the hot electron effect in an ultra-thin solar cell for the first time and collecting the elusive charges, which are typically lost in less than one-trillionth of a second in traditional solar cells.

Boston College researchers have observed the "hot electron" effect in a solar cell for the first time and successfully harvested the elusive charges using ultra-thin solar cells, opening a potential avenue to improved solar power efficiency, the authors report in the current online edition of Applied Physics Letters.

When light is captured in solar cells, it generates free electrons in a range of energy states. But in order to snare these charges, the electrons must reach the bottom of the conduction band. The problem has been that these highly energized "hot" electrons lose much of their energy to heat along the way.

Hot electrons have been observed in other devices, such as semiconductors. But their high kinetic energy can cause these electrons, also known as "hot carriers," to degrade a device. Researchers have long theorized about the benefits of harnessing hot electrons for solar power through so-called "3rd generation" devices.

By using ultrathin solar cells -- a film fewer than 30 nanometers thick -- the team developed a mechanism able to extract hot electrons in the moments before they cool -- effectively opening a new "escape hatch" through which they typically don't travel, said co-author Michael J. Naughton, the Evelyn J. and Robert A. Ferris Professor of Physics at Boston College.

The team's success centered on minimizing the environment within which the electrons are able to escape, said Professor of Physics Krzysztof Kempa, lead author of the paper.

Kempa compared the challenge to trying to heat a swimming pool with a pot of boiling water. Drop the pot into the center of the pool and there would be no change in temperature at the edge because the heat would dissipate en route. But drop the pot into a sink filled with cold water and the heat would likely raise the temperature in the smaller area.

"We have shrunk the size of the solar cell by making it thin," Kempa said. "In doing so, we are bringing these hot electrons closer to the surface, so they can be collected more readily. These electrons have to be captured in less than a picosecond, which is less than one trillionth of a second."

The ultrathin cells demonstrated overall power conversion efficiency of approximately 3 percent using absorbers one fiftieth as thick as conventional cells. The team attributed the gains to the capture of hot electrons and an accompanying reduction in voltage-sapping heat. The researchers acknowledged the film's efficiency is limited by the negligible light collection of ultra-thin junctions. However, combining the film with better light-trapping technology -- such as nanowire structures -- could significantly increase efficiency in an ultra-thin hot electron solar cell technology.

In addition to Naughton and Kempa, the research team included Professor of Physics Zhifeng Ren, Research Associate Professor and Laboratory Director Andrzej A. Herczynski, Research Scientist Yantao Gao, doctoral student Timothy Kirkpatrick, and Jakub Rybczynski of Solasta Corp., of Newton MA, which supported the research. Naughton, Kempa and Ren are principals in the clean energy firm as well.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Cite This Page:

Boston College. "Elusive 'hot' electrons captured in ultra-thin solar cells." ScienceDaily. ScienceDaily, 12 December 2009. <www.sciencedaily.com/releases/2009/12/091211074427.htm>.
Boston College. (2009, December 12). Elusive 'hot' electrons captured in ultra-thin solar cells. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/12/091211074427.htm
Boston College. "Elusive 'hot' electrons captured in ultra-thin solar cells." ScienceDaily. www.sciencedaily.com/releases/2009/12/091211074427.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins