Featured Research

from universities, journals, and other organizations

Research may lead to better UV/radiation blocking in eye glasses

Date:
December 16, 2009
Source:
Penn State
Summary:
Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, according to researchers. These cerium-containing phosphate glasses have many commercial applications for use in windows, sunglasses and solar cells.

Adding cerium oxide to phosphate glass rather than the commonly used silicate glass may make glasses that block ultraviolet light and have increased radiation damage resistance while remaining colorless, according to Penn State researchers. These cerium-containing phosphate glasses have many commercial applications for use in windows, sunglasses and solar cells.

"We wanted to get larger amounts of cerium into glass, because of its beneficial properties, and then investigate the properties of the glasses," said Jen Rygel, graduate student in materials science and engineering.

Cerium exists in two states in glasses -- cerium (III) and cerium (IV) -- both states strongly absorb ultraviolet light. For years cerium has been added to silicate glass to enhance its ultraviolet absorbing capacity. The problem has always been that silicate glass can only dissolve so much cerium before it becomes saturated and can hold no more. Also, with high concentrations of cerium, silicate glass begins to turn yellow -- an undesirable characteristic for such things as windows or sunglasses.

Phosphate glasses have a more flexible structure then silicate glasses, which allow higher percentages of cerium to be incorporated before it begins to color. Rygel, working with Carlo Pantano, distinguished professor of materials science and engineering, and director of Penn State's Materials Research Institute, synthesized and compared 11 glasses with varying concentrations of cerium, aluminum, phosphorus and silica.

They found that they could make phosphate glasses with 16 times more cerium oxide than silicate glasses while maintaining the same coloration and ability to absorb ultraviolet light. They published their work in the Dec. 15 issue of Non-Crystalline Solids.

"We were able to get a lot more cerium into our phosphate glass without sacrificing the optical transmission -- they both still looked clear," said Rygel.

The researchers could get more cerium into phosphate glass compared to silicate because of the different bonding networks silica and phosphorus form when made into glasses.

One explanation for why phosphate glass can incorporate more cerium than silicate glass without yellowing may be that the absorbing ranges for the two cerium states -- cerium (III) and cerium (IV) -- are shifted to absorb less blue light in phosphate glasses.

"A good example is in solar cells," said Rygel. "The wavelengths that solar cells use aren't ultraviolet, and actually ultraviolet radiation can cause damage to the electronics of a solar cell. If you add cerium to the glass you can prevent the ultraviolet from getting down to the photovoltaic cells, potentially increasing their lifetime."

To synthesize their glasses the researchers used a procedure called open-crucible melting. Raw materials such as phosphorus pentoxide, aluminum phosphate, cerium phosphate and silicon dioxide were combined in a crucible and heated in a high-temperature furnace to a temperature of 3000 degrees Fahrenheit melting the contents to a liquid.

"After it's all melted, we pull it out of the furnace and pour it into a graphite mold," said Rygel. "The glass is then cooled down slowly so it doesn't break due to thermal stress."

Cerium additions do not just block ultraviolet light. Increasing a glass' cerium concentration can also increase its resistance to radiation damage from x-rays and gamma rays by capturing freed electrons.

"Radiation can kick electrons free from atoms," said Rygel. "You can see this by looking at what happens to a Coke bottle over time. It darkens because of radiation exposure."

The proposed mechanisms for cerium's ability to block radiation are all based on cerium's two states and their ratio within the glass. Because of these implications Rygel wanted to know what percentages of each existed within her glasses.

Using X-ray photoelectron spectroscopy Rygel could determine whether the cerium in the glass was mostly in the cerium (III) or cerium (IV) oxidation state, or a ratio of the two. She found that all of her glasses contained approximately 95 percent cerium (III).

The National Science Foundation and the U.S. Air Force Research Laboratory supported this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Research may lead to better UV/radiation blocking in eye glasses." ScienceDaily. ScienceDaily, 16 December 2009. <www.sciencedaily.com/releases/2009/12/091215112045.htm>.
Penn State. (2009, December 16). Research may lead to better UV/radiation blocking in eye glasses. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/12/091215112045.htm
Penn State. "Research may lead to better UV/radiation blocking in eye glasses." ScienceDaily. www.sciencedaily.com/releases/2009/12/091215112045.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins