Featured Research

from universities, journals, and other organizations

Stem-cell activators switch function, repress mature cells

Date:
December 19, 2009
Source:
Ohio State University Medical Center
Summary:
New research shows how a crucial step in stem-cell growth and differentiation happens and how a reversal of that step contributes to cancer. It shows that three key proteins first stimulate stem cells to proliferate. Then, as the cells differentiate into their final cell type, these proteins switch function and stop the cells from dividing any more. Because of their central role, the proteins could offer a safe and novel therapeutic target in many cancers.

New research shows how a crucial step in stem-cell growth and differentiation happens and how a reversal of that step contributes to cancer. It shows that three key proteins first stimulate stem cells to proliferate. Then, as the cells differentiate into their final cell type, these proteins switch function and stop the cells from dividing any more. Because of their central role, the proteins could offer a safe and novel therapeutic target in many cancers.

Related Articles


In a developing animal, stem cells proliferate and differentiate to form the organs needed for life. A new study shows how a crucial step in this process happens and how a reversal of that step contributes to cancer.

The study, led by researchers at the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, shows for the first time that three proteins, called E2f1, E2f2 and E2f3, play a key role in the transition stem cells make to their final, differentiated, state.

These proteins help stimulate stem cells to grow and proliferate. But once stem cells begin to differentiate into their final cell type -- a cell in the retina or in the lining of the intestine, for example -- the same three proteins switch function and stop them from dividing any more.

The research also shows how these proteins can switch course yet again in cells that have mutations in the retinoblastoma (Rb) gene. Mutated Rb genes occur in many types of cancer, suggesting that these E2f proteins might offer a safe and novel therapeutic target in these tumors.

The findings are published in back-to-back papers in the Dec. 17 issue of the journal Nature.

"We show that these E2fs are gene activators in stem cells but then switch to gene repressors when stem cells begin differentiating," says Gustavo Leone, associate professor of molecular virology, immunology and medical genetics at Ohio State's James Cancer Hospital and Solove Research Institute. Leone headed the first of the two Nature studies and is a co-author on the second.

"This is a very important step in the process of differentiation," Leone says. "As organs form during development, there comes a time when their growth must stop because an organ needs only a certain number of cells and no more. The switch by these proteins from activators to repressors is essential for that to happen. "Before this, there was no suspicion that these regulatory proteins had any role in differentiated cells," says Leone. "It was thought they were important only in proliferating cells like stem cells. But that's not true."

Leone and his colleagues show the function of the proteins in differentiation in mouse embryos, retinas, lenses and intestines.

They also show how the three proteins could revert back to gene activators in cancer cells and promote tumor growth in cancers with Rb mutations. "In this case, these proteins are acting abnormally relative to the surrounding tissue, so they might provide a safe therapeutic target," Leone explains. "If we can inactivate these E2fs in cancer cells, perhaps we can prevent further tumor growth without having a major affect on healthy cells."

Funding from the National Cancer Institute, the National Institute of Child Health and Human Development, and the Department of Defense supported this research.


Story Source:

The above story is based on materials provided by Ohio State University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University Medical Center. "Stem-cell activators switch function, repress mature cells." ScienceDaily. ScienceDaily, 19 December 2009. <www.sciencedaily.com/releases/2009/12/091216131745.htm>.
Ohio State University Medical Center. (2009, December 19). Stem-cell activators switch function, repress mature cells. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2009/12/091216131745.htm
Ohio State University Medical Center. "Stem-cell activators switch function, repress mature cells." ScienceDaily. www.sciencedaily.com/releases/2009/12/091216131745.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins