Featured Research

from universities, journals, and other organizations

Microorganisms cited as missing factor in climate change equation

Date:
January 4, 2010
Source:
University of Alabama
Summary:
Those seeking to understand and predict climate change can now use an additional tool to calculate carbon dioxide exchanges on land, according to a new article.

The research incorporates into global computer models the significant impact an enzyme, carbonic anhydrase, has on the chemical form of carbon dioxide released from the soil and reduces uncertainties in estimates of CO2 taken up and released in terrestrial ecosystems.
Credit: iStockphoto/Stefan Klein

Those seeking to understand and predict climate change can now use an additional tool to calculate carbon dioxide exchanges on land, according to a scientific journal article publishing this week.

The research, publishing in the Proceedings of the National Academy of Sciences, incorporates into global computer models the significant impact an enzyme, carbonic anhydrase, has on the chemical form of carbon dioxide released from the soil and reduces uncertainties in estimates of CO2 taken up and released in terrestrial ecosystems.

The same enzyme is present in foliage and soils, but leaves a different imprint on CO2 involved in photosynthesis and respired by soils.

"Our paper presents measurements from all the major regions of the world where we have experimentally determined the effect of this enzyme, produced by many microorganisms, on carbon dioxide released from the soil," said Dr. Behzad Mortazavi, an assistant professor of biological sciences at The University of Alabama, and a co-author of the article.

In computer models used to estimate and predict carbon dioxide, or CO2, exchange, scientists had previously incorporated the role this enzyme plays in the vegetation, but had neglected to include its role in soils, according to the collaborative paper written by 18 co-authors from around the world.

Revising the computer model predictions to take the soil enzymes' impact on CO2 into account reduces the discrepancies between the model and atmospheric observations, according to the paper whose lead authors are Lisa Wingate and Jιrτme Ogιe, representing the University of Edinburg and the French National Institute for Agricultural Research, respectively.

While scientists had suspected the enzyme was also active in soils, Mortazavi said the impact of the enzymes within soil on CO2 had been difficult to measure and thereby was not factored into the computer models.

In order to effectively tackle the complexities regarding human's impact on climate changes, it's important to accurately understand the natural processes, the UA scientist said.

"In general, it's very challenging to determine how much carbon is taken up by photosynthesis versus how much carbon is released by respiration," Mortazavi said.

"It's important to know the contributions of these two processes because as the climate is warming, the balance between carbon taken up and released on land will change. Warmer temperatures can increase the microbial activity in the soils, leading to a greater release of CO2 from the soil."

Ideally, the amount of carbon dioxide removed naturally through the carbon cycle balances the total carbon dioxide emissions. The amount of carbon released into the atmosphere has grown out of balance because of the increased number of human activities such as the use of fossil fuels, many scientists believe.

As the world debates what steps should be taken to address human activities believed to contribute to climate change, Mortazavi said it's important the naturally occurring processes are measured accurately, something to which this research will contribute.

"This is an additional tool to look separately at the uptake of CO2 by photosynthesis, on the one hand, and, on the other hand, the release of CO2 by respiration."


Story Source:

The above story is based on materials provided by University of Alabama. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wingate et al. The impact of soil microorganisms on the global budget of δ18O in atmospheric CO2. Proceedings of the National Academy of Sciences, 2009; 106 (52): 22411 DOI: 10.1073/pnas.0905210106

Cite This Page:

University of Alabama. "Microorganisms cited as missing factor in climate change equation." ScienceDaily. ScienceDaily, 4 January 2010. <www.sciencedaily.com/releases/2009/12/091218132535.htm>.
University of Alabama. (2010, January 4). Microorganisms cited as missing factor in climate change equation. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/12/091218132535.htm
University of Alabama. "Microorganisms cited as missing factor in climate change equation." ScienceDaily. www.sciencedaily.com/releases/2009/12/091218132535.htm (accessed September 2, 2014).

Share This




More Earth & Climate News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Iceland Lowers Aviation Alert on Volcano

Iceland Lowers Aviation Alert on Volcano

AFP (Sep. 1, 2014) — Iceland has lowered its aviation alert on its largest volcano after a fresh eruption on a nearby lava field prompted authorities to enforce a flight ban for several hours. Duration: 01:07 Video provided by AFP
Powered by NewsLook.com
Lightning Hurts 3 on NYC Beach

Lightning Hurts 3 on NYC Beach

AP (Sep. 1, 2014) — A lightning strike injured three people on a New York City beach on Sunday. The storms also delayed flights and interrupted play at the US Open tennis tournament. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Thailand Totters Towards Waste Crisis

Thailand Totters Towards Waste Crisis

AFP (Sep. 1, 2014) — Fears are mounting in Bangkok that poor planning and lax law enforcement are tipping Thailand towards a waste crisis. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Melting Ice Shelves Drive Rapid Antarctic Sea Level Rise

Newsy (Sep. 1, 2014) — A study of almost 20 years' worth of satellite images shows Antarctic sea levels are on the rise as ice shelves continue to melt. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins