Featured Research

from universities, journals, and other organizations

IKK may act as both inhibitor and promoter of Huntington's disease

Date:
December 24, 2009
Source:
Rockefeller University Press
Summary:
The kinase IKK phosphorylates the protein mutated in Huntington's disease to promote its removal and neuron survival, but IKK may be a double-edged sword that increases neurotoxicity in later stages of the disease.

The kinase IKK phosphorylates the protein mutated in Huntington's disease to promote its removal and neuron survival, but IKK may be a double-edged sword that increases neurotoxicity in later stages of the disease. The study, led by researchers from the University of California, Irvine, will be published online December 21 in the Journal of Cell Biology.

Huntington's disease is caused by an expanded polyglutamine repeat in the protein Huntingtin (Htt), which causes the protein to aggregate and damage neurons. Ubiquitination and SUMOylation of Htt's N-terminal domain affect the protein's stability and toxicity, but other post-translational modifications in this region of the protein might be important as well.

Thompson et al. discovered that the inflammatory kinase IKK phosphorylates Htt, altering the complex pattern of SUMOylation, ubiquitination, and acetylation on neighboring lysine residues. The net result was to promote Htt's degradation by both the proteasome and lysosomes. Lysosome-mediated degradation of Htt was blocked by knocking down the autophagy proteins LAMP-2A and Atg7. Compared to wild type, mutant Htt with an expanded polyglutamine stretch was degraded inefficiently, but a version that mimicked IKK phosphorylation with negatively charged aspartate residues was still less toxic to neuronal slice cultures.

But there may be a darker side to IKK phosphorylation -- it also targets Htt to the nucleus where, says senior author Joan Steffan, a particularly toxic fragment that enhances neurodegeneration may accumulate. IKK may thus be involved in both clearing Htt and in generating a more dangerous version of the protein. The latter pathway would predominate in older patients because proteasome and lysosome function declines with age. Therapies aimed at IKK might need to either enhance or block the kinase's function, depending on the patient's age and stage of disease.

Journal reference: Thompson, L.M., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200909067.


Story Source:

The above story is based on materials provided by Rockefeller University Press. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University Press. "IKK may act as both inhibitor and promoter of Huntington's disease." ScienceDaily. ScienceDaily, 24 December 2009. <www.sciencedaily.com/releases/2009/12/091221090522.htm>.
Rockefeller University Press. (2009, December 24). IKK may act as both inhibitor and promoter of Huntington's disease. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/12/091221090522.htm
Rockefeller University Press. "IKK may act as both inhibitor and promoter of Huntington's disease." ScienceDaily. www.sciencedaily.com/releases/2009/12/091221090522.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins