Featured Research

from universities, journals, and other organizations

Gravity in Potsdam and a dignified Christmas tree ball

Date:
December 23, 2009
Source:
Helmholtz Centre Potsdam
Summary:
Exactly one hundred years ago the force of gravity was measured for the first time with such accuracy that this measured value was established as a reference value world-wide.

If a glitter ball falls from the Christmas tree and smashes on the floor between the gifts, then that is a result of the force of gravity. The physicist, disguised for Christmas with a red jelly bag cap knows: that ball was accelerated with 9.81 meters per square-second towards the centre of the Earth, and that is sufficient to cause it to splinter on the ground. But where does this value for the gravitational force of the Earth come from?

Exactly one hundred years ago the force of gravity was measured for the first time with such accuracy that this measured value was established as a reference value world-wide. In the Potsdam Geodetic Institute inaugurated in 1892 on the Telegraph Hill, the predecessors of the GFZ German Research Centre for Geosciences, using pendulums, measured the gravitational acceleration with such precision that this Potsdam Absolute Value attained world-wide validity.

Pendulums on Potsdam Telegraph Hill

With the publication of his report on the relative measurements of gravitation using pendulums in the time period between 1908/09 and their representation in the Potsdam gravity system, Emil Borrass introduced the Potsdam System as the first internationally used gravity reference system defining an absolute gravity level. The reference value was based on the Reversion-Pendulum measurements made by Friedrich-Jacob Kuehnen and Philipp Furtwaengler in the years 1898 to 1904 in the pendulum hall of the Geodetic Institute at that time.

This was based on experience: Robert D. v. Sterneck was first to carry out pendulum measurements in the newly established Institute. In the portly style of his time, von Sterneck remarked:"Mr. Director Helmert had the goodness to have the pendulum hall, still partly in the completion phase, provisionally equipped so that I was able to carry out the observations in this same hall. It is a special honour for me and gives me the highest satisfaction that it was I who had the privilege of being the first person to use this exemplary institute dedicated to gravity of the Earth, and that in the presence of its designer and creator, Mr Director Dr. Helmert." (v. Sterneck, 1893).

Not exact enough?

For several decades the Potsdam gravity value was the standard reference system referred to for all gravity measurements world-wide. In the 1930s measurements showed a systematic deviation from the Potsdam reference value, which was confirmed by measurements in the subsequent years. Gravity values, which are defined in the Potsdam Gravity System, lie higher by 140 ĩm/sē. The cause for this discrepancy has actually not been fully explained to date. And the Potsdam Gravity System is also not forgotten today. Although it was officially replaced in the year 1971 by the International Gravity Standardization Net in 1971 (I.G:S.N.1971), it, nevertheless, still applies in some countries. In the case of compiling data records from different countries, these gravity data stand out due to the mentioned misalignment and must be corrected accordingly.

Dents and bumps: the Potsdam Gravity Potato

One of the most important reference fields for the Earth's gravity is the mean sea level. If one stand at the ocean's side you see a large flat surface, i,e. normal sea level. Actually, however, the sea surface shows bumps and dents, and that without wind, weather and tides.

The reason for this is the different gravity pull due to uneven mass distributions in the Earth's interior. This also pulls the water with different forces. The sea level always responds perpendicularly to the gravity pull and if this strength pulls slightly from the side, then the seacaves in at this point. South of India the sea surface shows an approximately 110 meters deep dent and north of Indonesia an 85 meter high bump. Mind you: water does not flow there, as we are dealing here with a surface of equal gravitational pull of the Earth. Researchers at the GFZ, a Helmholtz centre in Potsdam have developed a model for this: That "Potsdam Geoid" shows the irregularities in the gravity field increased by 15.000 times: a multicoloured, irregular, but dignified Christmas ball, the Potsdam Gravity Potato.


Story Source:

The above story is based on materials provided by Helmholtz Centre Potsdam. Note: Materials may be edited for content and length.


Cite This Page:

Helmholtz Centre Potsdam. "Gravity in Potsdam and a dignified Christmas tree ball." ScienceDaily. ScienceDaily, 23 December 2009. <www.sciencedaily.com/releases/2009/12/091221130031.htm>.
Helmholtz Centre Potsdam. (2009, December 23). Gravity in Potsdam and a dignified Christmas tree ball. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/12/091221130031.htm
Helmholtz Centre Potsdam. "Gravity in Potsdam and a dignified Christmas tree ball." ScienceDaily. www.sciencedaily.com/releases/2009/12/091221130031.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins