Featured Research

from universities, journals, and other organizations

Gravity in Potsdam and a dignified Christmas tree ball

Date:
December 23, 2009
Source:
Helmholtz Centre Potsdam
Summary:
Exactly one hundred years ago the force of gravity was measured for the first time with such accuracy that this measured value was established as a reference value world-wide.

If a glitter ball falls from the Christmas tree and smashes on the floor between the gifts, then that is a result of the force of gravity. The physicist, disguised for Christmas with a red jelly bag cap knows: that ball was accelerated with 9.81 meters per square-second towards the centre of the Earth, and that is sufficient to cause it to splinter on the ground. But where does this value for the gravitational force of the Earth come from?

Exactly one hundred years ago the force of gravity was measured for the first time with such accuracy that this measured value was established as a reference value world-wide. In the Potsdam Geodetic Institute inaugurated in 1892 on the Telegraph Hill, the predecessors of the GFZ German Research Centre for Geosciences, using pendulums, measured the gravitational acceleration with such precision that this Potsdam Absolute Value attained world-wide validity.

Pendulums on Potsdam Telegraph Hill

With the publication of his report on the relative measurements of gravitation using pendulums in the time period between 1908/09 and their representation in the Potsdam gravity system, Emil Borrass introduced the Potsdam System as the first internationally used gravity reference system defining an absolute gravity level. The reference value was based on the Reversion-Pendulum measurements made by Friedrich-Jacob Kuehnen and Philipp Furtwaengler in the years 1898 to 1904 in the pendulum hall of the Geodetic Institute at that time.

This was based on experience: Robert D. v. Sterneck was first to carry out pendulum measurements in the newly established Institute. In the portly style of his time, von Sterneck remarked:"Mr. Director Helmert had the goodness to have the pendulum hall, still partly in the completion phase, provisionally equipped so that I was able to carry out the observations in this same hall. It is a special honour for me and gives me the highest satisfaction that it was I who had the privilege of being the first person to use this exemplary institute dedicated to gravity of the Earth, and that in the presence of its designer and creator, Mr Director Dr. Helmert." (v. Sterneck, 1893).

Not exact enough?

For several decades the Potsdam gravity value was the standard reference system referred to for all gravity measurements world-wide. In the 1930s measurements showed a systematic deviation from the Potsdam reference value, which was confirmed by measurements in the subsequent years. Gravity values, which are defined in the Potsdam Gravity System, lie higher by 140 ĩm/sē. The cause for this discrepancy has actually not been fully explained to date. And the Potsdam Gravity System is also not forgotten today. Although it was officially replaced in the year 1971 by the International Gravity Standardization Net in 1971 (I.G:S.N.1971), it, nevertheless, still applies in some countries. In the case of compiling data records from different countries, these gravity data stand out due to the mentioned misalignment and must be corrected accordingly.

Dents and bumps: the Potsdam Gravity Potato

One of the most important reference fields for the Earth's gravity is the mean sea level. If one stand at the ocean's side you see a large flat surface, i,e. normal sea level. Actually, however, the sea surface shows bumps and dents, and that without wind, weather and tides.

The reason for this is the different gravity pull due to uneven mass distributions in the Earth's interior. This also pulls the water with different forces. The sea level always responds perpendicularly to the gravity pull and if this strength pulls slightly from the side, then the seacaves in at this point. South of India the sea surface shows an approximately 110 meters deep dent and north of Indonesia an 85 meter high bump. Mind you: water does not flow there, as we are dealing here with a surface of equal gravitational pull of the Earth. Researchers at the GFZ, a Helmholtz centre in Potsdam have developed a model for this: That "Potsdam Geoid" shows the irregularities in the gravity field increased by 15.000 times: a multicoloured, irregular, but dignified Christmas ball, the Potsdam Gravity Potato.


Story Source:

The above story is based on materials provided by Helmholtz Centre Potsdam. Note: Materials may be edited for content and length.


Cite This Page:

Helmholtz Centre Potsdam. "Gravity in Potsdam and a dignified Christmas tree ball." ScienceDaily. ScienceDaily, 23 December 2009. <www.sciencedaily.com/releases/2009/12/091221130031.htm>.
Helmholtz Centre Potsdam. (2009, December 23). Gravity in Potsdam and a dignified Christmas tree ball. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/12/091221130031.htm
Helmholtz Centre Potsdam. "Gravity in Potsdam and a dignified Christmas tree ball." ScienceDaily. www.sciencedaily.com/releases/2009/12/091221130031.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins