Featured Research

from universities, journals, and other organizations

Enzyme necessary for development of healthy immune system

Date:
December 29, 2009
Source:
University of California - Los Angeles
Summary:
Mice without the deoxycytidine kinase enzyme have defects in their adaptive immune system, producing very low levels of both T and B lymphocytes, the major players involved in immune response, according to a new study.

Mice without the deoxycytidine kinase (dCK) enzyme have defects in their adaptive immune system, producing very low levels of both T and B lymphocytes, the major players involved in immune response, according to a study by researchers with UCLA's Jonsson Comprehensive Cancer Center.

The finding could have ramifications in treating auto-immune disorders, in which the body attacks itself, and possibly certain cancers of the immune system. A drug could be developed to create lower levels of dCK in the body, thereby tamping down immune response. Such a drug might also be effective in transplant patients to decrease risk for rejection, said Dr. Caius Radu, an assistant professor of Molecular and Medical Pharmacology, a Jonsson Cancer Center researcher and senior author of the study.

The study, part of a long-term research project that has resulted in the development of a new probe for Positron Emission Tomography (PET) scanning and the creation of a non-invasive approach to observe chemotherapy at work in the body, appears this week in the early online edition of the Proceedings of the National Academy of Sciences.

"It would be desirable to have drugs that can inhibit immune response when that response is detrimental and increase response when needed," said Radu, who also is a scientist with the Broad Stem Cell Research Center. "We are now trying to identify drugs that inhibit or activate dCK in the hopes of testing them on certain diseases."

The dCK enzyme helps recycle the products of DNA degradation, allowing cells to efficiently replicate their DNA during cell division. Until now, the enzyme was thought to play a relatively minor role in providing cells the material for DNA replication. However, this finding challenges that view and indicates the enzyme plays a profound role in normal lymphocyte development.

Wayne Austin, a graduate study in Molecular and Medical Pharmacology and first author of the study, said the research team expected to find widespread defects in development when they knocked out the dCK enzyme in the mice.

"Surprisingly, we found that the gene had a highly specific role in the development of organs crucial to a normally-functioning immune system," Austin said. "Mice lacking the dCK enzyme have thymuses that are reduced in size by 90-fold. That defect in thymus size resulted in mice having 5 to 13-times fewer lymphocytes circulating throughout the body."

This finding is part of research that was launched several years ago and represents the third significant discovery. The first was the development of a new probe for PET scanning created by modifying a common chemotherapy drug, an advance that allowed UCLA researchers to model and measure the immune system in action and monitor response to new therapies.

Researchers created the molecule, called FAC, by slightly altering the molecular structure of gemcitabine, a chemotherapy drug that is activated by dCK activity. They added a radiolabel so the cells that take in the probe can be seen during PET scanning.

The probe was based on a fundamental cell biochemical pathway called the DNA Salvage Pathway, which includes dCK. All cells use this biochemical pathway to different degrees. But in lymphocytes, which are the active players in the adaptive immune system, the pathway is activated at very high levels. Because of that, the probe accumulates at high levels in those cells, said Dr. Owen Witte, director of the Broad Stem Cell Research Center and a Howard Hughes Medical Institute investigator.

That work was published June 8, 2008 in the journal Nature Medicine.

The second significant finding was the development of a non-invasive approach that may allow doctors to evaluate a tumor's response to a drug before prescribing the treatment, enabling physicians to personalize therapy to the patient's unique biochemistry.

In this study, the UCLA team injected the FAC probe into mice that had developed leukemias that either had or did not have active dCK enzyme. After an hour, the researchers imaged the animals' bodies with a PET scan, which operates like a molecular camera, enabling the researchers to watch biological processes inside animals and people.

The PET scan offered a preview for how the tumor will react to a specific therapy because tumor cells that retained the probe also will be sensitive to chemotherapy drugs that also are activated by dCK. If the cells didn't absorb the probe, the tumor might respond more favorably to the drugs that don't need interaction with dCK to be effective.

That work appeared Feb. 2, 2009 in the Proceedings of the National Academy of Sciences.

The next step, outlined in this study, was to determine what would happen without any dCK in the body at all, and what ramifications that might have on certain diseases and their treatment.

The study was funded by grants from the National Cancer Institute/National Institutes of Health, the U.S. Department of Energy, California Institute for Regenerative Medicine and the Dana Foundation.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Enzyme necessary for development of healthy immune system." ScienceDaily. ScienceDaily, 29 December 2009. <www.sciencedaily.com/releases/2009/12/091222105447.htm>.
University of California - Los Angeles. (2009, December 29). Enzyme necessary for development of healthy immune system. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2009/12/091222105447.htm
University of California - Los Angeles. "Enzyme necessary for development of healthy immune system." ScienceDaily. www.sciencedaily.com/releases/2009/12/091222105447.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins