Featured Research

from universities, journals, and other organizations

Molecular anchor links the two inheritable diseases Fanconi anemia and Bloom's syndrome

Date:
January 3, 2010
Source:
Cell Press
Summary:
A new study establishes a molecular link that bridges two rare inherited disorders and explains why these diseases result in genetic instability. The research may lead to a better understanding of the complex mechanisms that enable cells to repair damaged DNA.

A new study establishes a molecular link that bridges two rare inherited disorders and explains why these diseases result in genetic instability. The research, published in the December 24th issue of the journal Molecular Cell, may lead to a better understanding of the complex mechanisms that enable cells to repair damaged DNA.

Related Articles


Fanconi Anemia (FA) and Bloom's Syndrome (BS) are unique rare genetic disorders that have some key characteristics in common. Both FA and BS are associated with disrupted DNA repair mechanisms and an elevated predisposition for cancer. The genetic mutations that cause FA and BS have been identified and, importantly, the genetic mutations associated with both FA and BS affect large molecular complexes composed of several proteins (the FA and BS core complexes) that mediate key DNA repair processes.

"There is strong clinical and biochemical evidence suggesting that FA and BS proteins may act in a common DNA repair pathway," explains study author Dr. Stephen C. West from the London Research Institute. "However, the specific interactions are poorly understood." Dr. West and co-author, Dr. Andrew J. Deans, examined the FA gene FANCM because it has been shown to directly bind to DNA and has been shown to have specificity for substrates that are similar to those linked with the BS core complex.

The researchers identified two regions in the FANCM protein that enabled it to physically link the FA core complex and the BS complex. FA and BS complexes bound independently to FANCM, but not with each other in the absence of FANCM. The researchers went on to show that a disruption of the interaction between the two core complexes and FANCM led to similar chromosomal repair defects representative of both BA and FA cells.

"We have shown for the first time that FANCM acts as a molecular scaffold that functions in a variety of repair reactions and serves as a bridge between FA and BS. The biological and clinical implications of this link are likely to be important in relation to the phenotypes associated with these genetic disorders," explains Dr. West. "Further understanding how these interactions and reactions are regulated should provide a more complete understanding of the molecular basis of FA and BS."

The researchers include Andrew J. Deans and Stephen C. West, of London Research Institute, Cancer Research UK, South Mimms, UK.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Molecular anchor links the two inheritable diseases Fanconi anemia and Bloom's syndrome." ScienceDaily. ScienceDaily, 3 January 2010. <www.sciencedaily.com/releases/2009/12/091227212325.htm>.
Cell Press. (2010, January 3). Molecular anchor links the two inheritable diseases Fanconi anemia and Bloom's syndrome. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2009/12/091227212325.htm
Cell Press. "Molecular anchor links the two inheritable diseases Fanconi anemia and Bloom's syndrome." ScienceDaily. www.sciencedaily.com/releases/2009/12/091227212325.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins