Featured Research

from universities, journals, and other organizations

New solar pond distillation system devised

Date:
January 6, 2010
Source:
University of Nevada, Reno
Summary:
Ecosystems of terminus lakes around the world could benefit from a new system being developed to desalinate water using a specialized low-cost solar pond and patented membrane distillation system powered by renewable energy.

Francisco Suarez is developing an artificial salt-gradient stratification process that traps solar heat at the bottom of the solar pond and uses the collected energy to power a membrane distillation system recently patented by the University of Nevada, Reno. The system desalinates water using the specialized low-cost solar pond powered by renewable energy. The system is designed to help sustain the ecosystems of closed-basin lakes regions where there is no outflow for water and a high evaporation rate, leaving a high concentration of minerals and salts in the lakes. The hot brine in the lower storage zone of the pond, which can reach temperatures greater than 195 degrees Fahrenheit, may then be used directly for heating, thermal desalination, or for other low-temperature thermal applications.
Credit: Photo by Mike Wolterbeek

Ecosystems of terminus lakes around the world could benefit from a new system being developed at the University of Nevada, Reno to desalinate water using a specialized low-cost solar pond and patented membrane distillation system powered by renewable energy.

"These lakes -- hundreds worldwide -- such as the Great Salt Lake, the Salton Sea, the Aral Sea and Walker Lake here in Nevada, see a decline in water levels and an increase in salinity from both human and natural processes," Francisco Suarez, a doctoral student in hydrological sciences at the University, said. "The high levels of salinity are dangerous and unsustainable for aquatic life."

He presented a portion of his solar pond research at the annual Fall AGU (American Geophysical Union) Conference in San Francisco that was attended by 16,000 geophysicists from around the world. A paper on his project will be published in the International Journal of Heat and Mass Transfer in early 2010.

Suarez is developing an artificial salt-gradient stratification process that traps solar heat at the bottom of the solar pond and uses the collected energy to power the membrane distillation system recently patented by the University. The system is designed to help sustain the ecosystems of these closed-basin regions where there is no outflow for the water and a high evaporation rate, leaving a high concentration of minerals and salts.

The hot brine in the lower storage zone of the pond, which can reach temperatures greater than 195 degrees Fahrenheit, may then be used directly for heating, thermal desalination, or for other low-temperature thermal applications.

"Our model results show that in a two-week period, the temperature in the bottom of the solar pond increased from 68 to 126 degrees Fahrenheit and, even though the insulating layer is being eroded by double-diffusive convection, the solar pond remained stable," Suarez explained.

The process has been highly successful in the lab in a small-scale experiment using a 400-gallon tank, where dissolved solids and precise fiber-optic temperature sensing are being used to track the process as it desalinates the water. The next step for Suarez and the research group is to build a pilot-project, demonstration-scale, low-temperature desalination system in an open environment.

Suarez is working on this novel approach for sustainable production of freshwater with Civil and Environmental Engineering Department Professor and Chair Amy Childress and Professor Scott Tyler of the Department of Geological Sciences and Engineering. Childress and colleagues developed the patented membrane distillation system and Tyler developed the distributed temperature sensing system that uses a laser and fiber-optic cable to record temperatures in the solar pond.

"We're working on funding and permissions to build a system at Walker Lake where dissolved solids have increased by a factor of five to an unhealthy level for aquatic life, and water levels have dropped 140 feet in the past 100 years," Tyler said.

The cost to run the system is negligible because it uses the renewable energy of the sun, trapped as heat in the bottom, to power most of the system.

"This can operate 24 hours a day using the stored energy. Very little electricity would be used," Suarez said. "For every surface acre of solar pond we can make three acre-feet of freshwater in about one year.

"The major advantages of this system are that renewable energy is used, the system is low maintenance and the stratification process that helps drive the process uses the salts from the lake itself."

Hydrologist Tyler said the process could serve as one component of a salinity management program and, coupled with other remediation efforts, could desalinate Walker Lake enough to make it a safe aquatic habitat. The new technology he and his colleagues have developed could be applied to declining water systems anywhere, with preference to areas with good solar capabilities and adequate freshwater flows.


Story Source:

The above story is based on materials provided by University of Nevada, Reno. Note: Materials may be edited for content and length.


Cite This Page:

University of Nevada, Reno. "New solar pond distillation system devised." ScienceDaily. ScienceDaily, 6 January 2010. <www.sciencedaily.com/releases/2010/01/100105170942.htm>.
University of Nevada, Reno. (2010, January 6). New solar pond distillation system devised. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/01/100105170942.htm
University of Nevada, Reno. "New solar pond distillation system devised." ScienceDaily. www.sciencedaily.com/releases/2010/01/100105170942.htm (accessed July 22, 2014).

Share This




More Earth & Climate News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Orleans Plans to Recycle Cigarette Butts

New Orleans Plans to Recycle Cigarette Butts

AP (July 21, 2014) New Orleans is the first U.S. city to participate in a large-scale recycling effort for cigarette butts. The city is rolling out dozens of containers for smokers to use when they discard their butts. (July 21) Video provided by AP
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
Spectacular Lightning Storm Hits London

Spectacular Lightning Storm Hits London

AFP (July 19, 2014) A spectaCular lightning storm struck the UK overnight Friday. Images of lightning strikes over the Shard and Tower Bridge in central London. Duration: 00:23 Video provided by AFP
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins