Featured Research

from universities, journals, and other organizations

New insight on how trees have evolved to obtain light and photosynthesize at the greatest rate

Date:
January 14, 2010
Source:
American Journal of Botany
Summary:
Although scientists understand core processes such as photosynthesis, they do not have a full understanding of issues such as how plants maximize their photosynthetic capacity. Mathematical models for the distribution of light within the canopy predict that the photosynthetic rate of the entire canopy is maximized when the specific leaf area is lowest for leaves at the top of the canopy. This research provides new insight into the mechanism by which trees have evolved to obtain light and photosynthesize at the greatest rate.

Since the time of the earliest humans, people have attempted to understand the natural environment. We have observed our surroundings and searched for explanations for natural phenomena. Yet despite our persistence over thousands of years, many basic questions remain to be answered. Although we understand core processes such as photosynthesis, we do not have a full understanding of issues such as how plants maximize their photosynthetic capacity.

Related Articles


Specific leaf area, or SLA, plays a prominent role in ecological theories that attempt to provide explanations for plant and ecosystem function. SLA, a measurement of the total leaf area to dry mass, has been found to correlate with the potential for light-resource use, the relative growth rate of a plant, and differences in essential nutrient demand and habitat preference.

Scientists also have observed that the SLA of individual leaves varies within a single plant, and this measurement often correlates with leaf maturation and position within the canopy. More recently, scientists have discovered that, as a tree increases in size, its total canopy SLA decreases -- that is to say, its total leaf surface area fails to keep pace with increases in total leaf mass.

What causes this decrease in SLA as tree size increases has remained a mystery, but recent research by Cornell University scientists Karl Niklas and Edward Cobb published in the January issue of the American Journal of Botany provides an explanation for this decrease in SLA with an increase in tree size.

"The traditional explanation for the size-dependent decrease in SLA was never very satisfying," Niklas said. "We wanted to look at this phenomena in greater details with more care, and we found a totally different answer to a classic ecological question."

The commonly accepted hypothesis has been that decreasing SLA in trees of increasing size is a result of leaf-by-leaf acclimation to the local environment. Physical factors such as differences in light intensity are affected by differences in leaf position within the canopy, providing different local environments. Niklas and Cobb hypothesized that changes in SLA may be a result of changes in the relative numbers of different shoot types that produce leaves differing in SLAs -- a developmental shift that occurs as a tree increases in size.

Niklas and Cobb examined 15 red maple trees that differed in trunk size and found that the changes in SLA can be attributed to shoot type rather than to the location of the leaves within the canopy. As the trunk diameter increased, the number of short-shoots increased rapidly relative to the number of long-shoots. Detailed analyses of the largest tree demonstrated that short shoots, on average, produce leaves with smaller specific leaf areas than those produced by long shoots. Consequently, developmental shifts occurring at the shoot and whole plant level account for size-dependent decreases in total canopy SLA, rather than leaf-by-leaf acclimation to the local environment.

Mathematical models for the distribution of light within the canopy predict that the photosynthetic rate of the entire canopy is maximized when the specific leaf area is lowest for leaves at the top of the canopy. This research provides new insight into the mechanism by which trees have evolved to obtain light and photosynthesize at the greatest rate.

"Our research shows that plants are highly integrated organisms that respond to their environments in ways that are every bit as complex as even the most sophisticated animals," Niklas said. "This research also shows that we still have plenty to learn about phenomena that we thought we understood very well."


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Journal Reference:

  1. Karl J. Niklas, Edward D. Cobb. Ontogenetic changes in the numbers of short- vs. long-shoots account for decreasing specific leaf area in Acer rubrum (Aceraceae) as trees increase in size. American Journal of Botany, 2010; 97 (1): 27 DOI: 10.3732/ajb.0900249

Cite This Page:

American Journal of Botany. "New insight on how trees have evolved to obtain light and photosynthesize at the greatest rate." ScienceDaily. ScienceDaily, 14 January 2010. <www.sciencedaily.com/releases/2010/01/100113131628.htm>.
American Journal of Botany. (2010, January 14). New insight on how trees have evolved to obtain light and photosynthesize at the greatest rate. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2010/01/100113131628.htm
American Journal of Botany. "New insight on how trees have evolved to obtain light and photosynthesize at the greatest rate." ScienceDaily. www.sciencedaily.com/releases/2010/01/100113131628.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins