Featured Research

from universities, journals, and other organizations

Novel mouse model of demyelinating disorder

Date:
January 20, 2010
Source:
Cold Spring Harbor Laboratory
Summary:
In a new study, researchers describe how mutation of a gene called ZFP191 leads to disordered central nervous system myelination in mice -- reminiscent of what is seen in human multiple sclerosis patients.

In the February 1st issue of Genes & Development, Dr. Brian Popko (The University of Chicago) and colleagues describe how mutation of a gene called ZFP191 leads to disordered central nervous system (CNS) myelination in mice -- reminiscent of what is seen in human multiple sclerosis (MS) patients.

MS is a chronic autoimmune disorder, in which the body attacks and destroys the myelin sheath that insulates and protects nerve fibers of the central nervous system (the brain, spinal cord and optic nerves). Demyelination disrupts the conduction of electrical impulses along nerve fibers, and results in regional neural deficits. MS symptoms range from tingling and numbness in limbs, to loss of vision and paralysis.

It is estimated that MS affects 400,000 people in the US and approximately 2.5 million worldwide.

Dr. Popko and colleagues identified a gene called ZFP191 as being necessary for the development of oligodendrocyte cells, which -- in their fully mature form -- produce myelin. The researchers found that mice harboring a single mutation in ZFP191 display tremors and seizures, caused by a severe deficiency in CNS myelination.

ZFP191 appears to be the first factor identified to be critical for the myelinating function of oligodendrocytes.

The failure of Zfp191-mutant mouse oligodendrocytes to successfully myelinate their targets is reminiscent of human MS lesions, where re-myelination of damaged tracts fails to occur efficiently even when apparently mature oligodendrocytes are present in the area.

While further research to delineate the precise targets of ZFP191 is needed, this work holds promising clinical value as a potential therapeutic pathway to promote re-myelination, reduce the accumulation of MS lesions and slow disease progression.

The paper will be released online ahead of print at www.genesdev.org.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Novel mouse model of demyelinating disorder." ScienceDaily. ScienceDaily, 20 January 2010. <www.sciencedaily.com/releases/2010/01/100114171531.htm>.
Cold Spring Harbor Laboratory. (2010, January 20). Novel mouse model of demyelinating disorder. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2010/01/100114171531.htm
Cold Spring Harbor Laboratory. "Novel mouse model of demyelinating disorder." ScienceDaily. www.sciencedaily.com/releases/2010/01/100114171531.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins