Featured Research

from universities, journals, and other organizations

New concoction reprograms differentiated cells into pluripotent stem cells

Date:
January 22, 2010
Source:
Agency for Science, Technology and Research (A*STAR), Singapore
Summary:
Singapore scientists report surprising discovery that novel transcription factor Nr5a2 can replace classical reprogramming factor Oct4 to significantly increase efficiency of reprogramming differentiated stem cells into iPS cells.

In the new issue of the journal Cell Stem Cell, Singapore scientists report the surprising discovery that a novel transcription factor, Nr5a2, can replace one of the classical reprogramming factors, Oct4, to significantly increase the efficiency of reprogramming differentiated stem cells into induced pluripotent stem cells (iPS cells).

Previous research revealed that the reprogramming of differentiated cells into induced iPS cells could be achieved by the three transcription factors, Oct4, Sox2 and Klf4.

In this latest finding, which is potentially relevant to cell therapy-based medicine, Genome Institute of Singapore (GIS) and National University of Singapore (NUS) scientists determined that Nr5a2 can replace Oct4. Thus, a new combination of Nr5a2, Sox2 and Klf4 can reprogram differentiated cells into iPS cells.

"This is a very exciting moment," said GIS Senior Group Leader Ng Huck Hui, Ph.D. "Fundamental research in embryonic stem cells is extremely important for us to harness the full potentials of these cells, and this study provides valuable and crucial insights into the mechanism of reprogramming.

"Given Oct4's critical role in embryonic stem cells and reprogramming, we were very surprised with the discovery that Nr5a2 could replace Oct4," added Dr. Ng, senior author of the paper. "This study highlights the prospect of finding more surprises in the field of reprogramming."

"This paper represents significant addition to the very active field of cellular reprogramming," added Davor Solter, M.D., Ph.D., Senior Principal Investigator at Singapore's Institute of Medical Biology (IMB).

Both GIS and IMB are part of Singapore's A*STAR (Agency for Science, Technology and Research).

"The authors show that gene coding for nuclear receptor Nr5a2 can replace one of the classical reprogramming factors Oct 4," Dr. Solter said. "In addition they presented evidence that this and another nuclear receptor can significantly increase the efficiency of reprogramming. These results have great basic and practical significance."

The reprogramming of differentiated cells into iPS cells is one of the most important breakthroughs in stem cell research, because iPS cells can give rise to all other differentiated cell types that make up the human body.

Because they behave like embryonic stem cells, iPS cells are important starting points for the creation of organs for replacement or transplantation.

The Cell Stem Cell paper, published on Jan. 21, 2010, is the second research report on iPS cell science by Dr. Ng's research group. In Jan. 2009, Dr. Ng and his colleagues reported in Nature Cell Biology that the transcription factor Esrrb could replace Klf4 in the combination of Oct4, Sox2 and Klf4 for iPS cell creation.


Story Source:

The above story is based on materials provided by Agency for Science, Technology and Research (A*STAR), Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jian-Chien Dominic Heng, Bo Feng, Jianyong Han, Jianming Jiang, Petra Kraus, Jia-Hui Ng, Yuriy L. Orlov, Mikael Huss, Lin Yang, Thomas Lufkin, Bing Lim, Huck-Hui Ng. The Nuclear Receptor Nr5a2 can replace Oct4 in the Reprogramming of Murine Somatic Cells to Pluripotent Cells. Cell Stem Cell, 2010; DOI: 10.1016/j.stem.2009.12.009

Cite This Page:

Agency for Science, Technology and Research (A*STAR), Singapore. "New concoction reprograms differentiated cells into pluripotent stem cells." ScienceDaily. ScienceDaily, 22 January 2010. <www.sciencedaily.com/releases/2010/01/100121135702.htm>.
Agency for Science, Technology and Research (A*STAR), Singapore. (2010, January 22). New concoction reprograms differentiated cells into pluripotent stem cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/01/100121135702.htm
Agency for Science, Technology and Research (A*STAR), Singapore. "New concoction reprograms differentiated cells into pluripotent stem cells." ScienceDaily. www.sciencedaily.com/releases/2010/01/100121135702.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins