Featured Research

from universities, journals, and other organizations

Surprising discovery: X-rays drive formation of new crystals; crystals resemble some biological structures

Date:
January 27, 2010
Source:
Northwestern University
Summary:
X-rays can do a lot of useful things, but who knew they could cause crystals to form? Researchers have discovered that X-rays can trigger the formation of a new type of crystal: charged cylindrical filaments ordered like a bundle of pencils experiencing repulsive forces, which is unknown in crystals. The results open the door to using X-rays to control the structure of materials or to develop novel biomedical therapies.

A network with crystalline bundles of filaments.
Credit: Yuri S. Velichko

X-rays can do a lot of useful things -- detect broken bones, tumors and dental cavities, analyze atoms in diverse materials and screen luggage at airports -- but who knew they could cause crystals to form?

A team of Northwestern University researchers has discovered that X-rays can trigger the formation of a new type of crystal: charged cylindrical filaments ordered like a bundle of pencils experiencing repulsive forces, which is unknown in crystals. Similar phenomena may occur naturally in biology, such as in the cytoskeleton filaments of cells, which control cell division and migration in cancer metastasis and many other processes.

The results, which will be published in the Jan. 29 issue of the journal Science, expand scientific knowledge of crystals, whether from nature, technological devices or the lab, and also open the door to using X-rays to control the structure of materials or to develop novel biomedical therapies.

Crystal formation is usually based on attractive forces between atoms or molecules, making the Northwestern discovery completely unexpected.

"This is a very intriguing and astonishing result," said Samuel I. Stupp, the paper's senior author and Board of Trustees Professor of Chemistry, Materials Science and Engineering, and Medicine. "The filaments are charged so one would expect them to repel each other, not to organize into a crystal. Even though they are repelling each other, we believe the hundreds of thousands of filaments in the bundles are trapped within a network and form a crystal to become more stable."

The discovery of the new crystals was serendipitous. Very early one morning at Argonne National Laboratory, the members of Stupp's research team applied synchrotron X-ray radiation to a solution of peptide nanofibers they were studying. (The peptides are small synthetic molecules that can be used to create new materials.) The researchers saw the solution go from clear to opaque.

"There was a dramatic change in the way filaments scattered the radiation," said first author Honggang Cui, a postdoctoral fellow in Stupp's lab. "The X-rays turned a disordered structure into something ordered -- a crystal."

The X-rays increase the charge of the filaments, and thus a repulsive electrostatic force drives the crystallization -- a hexagonal stacking of filaments. Trapped in a three-dimensional network, the charged bundled filaments are unable to escape from each other. The crystals disappear when the X-rays are turned off, and the material is not significantly damaged by the radiation.

As a result of repulsive forces, the filaments are positioned far apart from each other, with as much as 320 angstroms separating the filaments. This striking feature is not found in ordinary crystals where molecules are less than five angstroms apart.

"There are oceans of water inside the crystal," Stupp said. "More than 99 percent of the structure is water." The researchers also observed that when the concentration of the charged filaments in solution was higher, the same crystals formed spontaneously without the need to expose them to X-rays.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Honggang Cui, E. Thomas Pashuck, Yuri S. Velichko, Steven J. Weigand, Andrew G. Cheetham, Christina J. Newcomb, Samuel I. Stupp. Spontaneous- and X-ray-Triggered Crystallization at Long Range in Self-Assembling Filament Networks. Science, 2009; DOI: 10.1126/science.1182340

Cite This Page:

Northwestern University. "Surprising discovery: X-rays drive formation of new crystals; crystals resemble some biological structures." ScienceDaily. ScienceDaily, 27 January 2010. <www.sciencedaily.com/releases/2010/01/100125131456.htm>.
Northwestern University. (2010, January 27). Surprising discovery: X-rays drive formation of new crystals; crystals resemble some biological structures. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/01/100125131456.htm
Northwestern University. "Surprising discovery: X-rays drive formation of new crystals; crystals resemble some biological structures." ScienceDaily. www.sciencedaily.com/releases/2010/01/100125131456.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins