Featured Research

from universities, journals, and other organizations

Researchers develop new tool for gene delivery

Date:
January 28, 2010
Source:
Tufts University, Health Sciences
Summary:
Researchers have developed a new tool to deliver DNA in gene therapy. DNA delivered to the retina with a peptide called PEG-POD was expressed 215 times more efficiently than delivery of DNA alone. The finding highlights PEG-POD as a tool for non-viral gene therapy treatments for eye disorders such as age-related macular degeneration and retinitis pigmentosa.

Researchers at Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have developed a new tool for gene therapy that significantly increases gene delivery to cells in the retina compared to other carriers and DNA alone, according to a study published in the January issue of The Journal of Gene Medicine.

The tool, a peptide called PEG-POD, provides a vehicle for therapeutic genes and may help researchers develop therapies for degenerative eye disorders such as retinitis pigmentosa and age-related macular degeneration.

"For the first time, we have demonstrated an efficient way to transfer DNA into cells without using a virus, currently the most common means of DNA delivery. Many non-viral vectors for gene therapy have been developed but few, if any, work in post-mitotic tissues such as the retina and brain. Identifying effective carriers like PEG-POD brings us closer to gene therapy to protect the retinal cells from degeneration," said senior author Rajendra Kumar-Singh, PhD, associate professor of ophthalmology and adjunct associate professor of neuroscience at Tufts University School of Medicine (TUSM) and member of the genetics; neuroscience; and cell, molecular, and developmental biology program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts.

Safe and effective delivery of therapeutic genes has been a major obstacle in gene therapy research. Deactivated viruses have frequently been used, but concerns about the safety of this method have left scientists seeking new ways to get therapeutic genes into cells.

"We think the level of gene expression seen with PEG-POD may be enough to protect the retina from degeneration, slowing the progression of eye disorders and we have preliminary evidence that this is indeed the case," said co-author Siobhan Cashman, PhD, research assistant professor in the department of ophthalmology at TUSM and member of Kumar-Singh's lab.

"What makes PEG-POD especially promising is that it will likely have applications beyond the retina. Because PEG-POD protects DNA from damage in the bloodstream, it may pave the way for gene therapy treatments that can be administered through an IV and directed to many other parts of the body," said Kumar-Singh.

Kumar-Singh and colleagues used an in vivo model to compare the effectiveness of PEG-POD with two other carriers (PEG-TAT and PEG-CK30) and a control (injections of DNA alone).

"Gene expression in specimens injected with PEG-POD was 215 times greater than the control. While all three carriers delivered DNA to the retinal cells, PEG-POD was by far the most effective," said first author Sarah Parker Read, an MD/PhD candidate at TUSM and Sackler and member of Kumar-Singh's lab.

Age-related macular degeneration, which results in a loss of sharp, central vision, is the number one cause of vision loss in Americans age 60 and older. Retinitis pigmentosa, an inherited condition resulting in retinal damage, affects approximately 1 in 4,000 individuals in the United States.

This study was supported by grants from the National Eye Institute of the National Institutes of Health, the Foundation for Fighting Blindness, The Ellison Foundation, The Virginia B. Smith Trust, the Lions Eye Foundation, and Research to Prevent Blindness. Sarah Parker Read is part of the Sackler/TUSM Medical Scientist Training Program, which is funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Tufts University, Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Read SP, Cashman SM, Kumar-Singh R. A poly(ethylene) glycolylated peptide for ocular delivery compacts DNA into nanoparticles for gene delivery to post-mitotic tissues in vivo. The Journal of Gene Medicine, 2010; 12 (1): 86 DOI: 10.1002/jgm.1415

Cite This Page:

Tufts University, Health Sciences. "Researchers develop new tool for gene delivery." ScienceDaily. ScienceDaily, 28 January 2010. <www.sciencedaily.com/releases/2010/01/100127095922.htm>.
Tufts University, Health Sciences. (2010, January 28). Researchers develop new tool for gene delivery. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/01/100127095922.htm
Tufts University, Health Sciences. "Researchers develop new tool for gene delivery." ScienceDaily. www.sciencedaily.com/releases/2010/01/100127095922.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins