Featured Research

from universities, journals, and other organizations

Star shoots out material at close to the speed of light

Date:
January 28, 2010
Source:
University of Hertfordshire
Summary:
Astronomers studying a stellar explosion (known as SN 2007gr) have found long-sought evidence that certain types of supernovae produce 'relativistic' jets of particles, traveling at more than half the speed of light.

Initial e-VLBI detection of SN 2007gr with the EVN on 6-7 September 2007 (colours). The EVN and Green Bank Telescope VLBI image obtained on 5-6 November 2007 is overlaid (contour representation). By the time of the second observation the source had expanded and was no longer consistent with an unresolved object as bright as indicated by the independent WSRT measurements. At the distance of the supernova this is consistent with an expansion velocity higher than half of the speed of light.
Credit: Image courtesy of University of Hertfordshire

An international team of scientists, including Dr. Jonathan Granot from the University of Hertfordshire in the UK, has studied a supernova explosion (known as SN 2007gr) of a star and have found long-sought evidence that certain types of supernovae produce "relativistic" jets of particles, travelling at more than half the speed of light.

This discovery, which is to be reported in a paper to be published in the 28 January 2010 issue of Nature was made by a team, led by Dr. Zsolt Paragi from the Joint Institute for VLBI in Europe (JIVE) in the Netherlands.

The team reports for the first time ever, detection of a relativistic outflow in a Type Ic supernova without a gamma-ray burst. Previously, the only supernova explosions in which such relativistic jets were observed were of the same kind (Type Ic), but produced gamma-ray bursts -- the universe's most luminous explosions, and the supernovae were detected only after and thanks to the gamma-ray bursts.

Supernovae are very distant sources, and their radio emission fades quickly. Therefore, the highest angular resolution imaging technique, called Very Long Baseline Interferometry (VLBI), is required to receive the extremely faint emission and reveal the details of the explosion aftermath. The electronic VLBI (e-VLBI) capabilities of the European VLBI Network (EVN) enabled an early first observation of SN 2007gr with this sensitive array, and allowed the team to timely perform more observations, which provided direct evidence for expansion of the radio image, and determined an apparent expansion velocity of at least 60 percent of the speed of light.

The relativistic radio emitting material carried only about 0.01 percent of the total energy in the supernova explosion -- much lower than in the relativistic jets of gamma-ray bursts, suggesting that SN 2007gr did not produce a gamma-ray burst.

These new observations suggest a broad continuous distribution in the properties of such core collapse supernovae. "The intrinsically dim radio emission of SN 2007gr and its small distance from us imply that such events, with mildly relativistic jets carrying a very small fraction of the total explosion energy, may represent most of the population" said Dr. Granot at the University of Hertfordshire's School of Physics Astronomy and Mathematics.

"The radio luminosity of some nearby, dim gamma-ray bursts is somewhat larger than that of SN 2007gr, suggesting a gradual increase in the energy and speed of the radio emitting jets, as their fraction of the total population decreases," he added.

The most extreme (and correspondingly rare -- about one out of a few thousand such core collapse supernovae) events in this continuum are the bright gamma-ray bursts, which are typically observed from billions of light-years away, and whose jets move at more than 99.995 percent of the speed of light and have energies similar to or even larger than that of typical supernovae.


Story Source:

The above story is based on materials provided by University of Hertfordshire. Note: Materials may be edited for content and length.


Journal Reference:

  1. Paragi et al. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr. Nature, 2010; 463 (7280): 516 DOI: 10.1038/nature08713

Cite This Page:

University of Hertfordshire. "Star shoots out material at close to the speed of light." ScienceDaily. ScienceDaily, 28 January 2010. <www.sciencedaily.com/releases/2010/01/100127134723.htm>.
University of Hertfordshire. (2010, January 28). Star shoots out material at close to the speed of light. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2010/01/100127134723.htm
University of Hertfordshire. "Star shoots out material at close to the speed of light." ScienceDaily. www.sciencedaily.com/releases/2010/01/100127134723.htm (accessed July 24, 2014).

Share This




More Space & Time News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins