Featured Research

from universities, journals, and other organizations

Key milestone reached on road to graphene-based electronic devices

Date:
February 1, 2010
Source:
Penn State Materials Research Institute
Summary:
Researchers have produced 100mm diameter graphene wafers, a key milestone in the development of graphene for next generation high frequency electronic devices. Graphene is a 2-dimensional layer of tightly bound carbon atoms arranged in hexagonal arrays. Sheets of graphene are the building blocks of graphite. Due to its phenomenal electronic properties, graphene has been considered as a leading material for next generation electronic devices in the multibillion dollar semiconductor industry.

A 100mm graphene wafer containing approximately 75,000 devices and test structures. Inset - an optical image of a single chip. Each small square pad on the chip is a mere 100 microns -- the thickness of a human hair. Devices were fabricated at the Penn State Nanofab, a facility of the Materials Research Institute.
Credit: Joshua Robinson

Researchers in the Electro-Optics Center (EOC) Materials Division at Penn State have produced 100mm diameter graphene wafers, a key milestone in the development of graphene for next generation high frequency electronic devices. Graphene is a 2-dimensional layer of tightly bound carbon atoms arranged in hexagonal arrays. Sheets of graphene are the building blocks of graphite. Due to its phenomenal electronic properties, graphene has been considered as a leading material for next generation electronic devices in the multibillion dollar semiconductor industry.

Related Articles


Using a process called silicon sublimation, EOC researchers David Snyder and Randy Cavalero thermally processed silicon carbide wafers in a physical vapor transport furnace until the silicon migrated away from the surface, leaving behind a layer of carbon that formed into a one- to two-atom-thick film of graphene on the wafer surface. Achieving 100mm graphene wafers has put the Penn State EOC in a leading position for the synthesis of ultra-large graphene and graphene-based devices.

With the support of the Naval Surface Warfare Center, EOC researchers are initially focusing on graphene materials to improve the transistor performance in various radio frequency (RF) applications. According to EOC materials scientist Joshua Robinson, Penn State is developing graphene device processing to enhance graphene transistor performance and has fabricated RF field effect transistors on 100mm graphene wafers.

Another goal of the Penn State researchers is to improve the electron mobility of the Si-sublimated wafers to nearer the theoretical limit, approximately 100 times faster than silicon. That will require improvements in the material quality and device design, says Robinson, but there is significant room for improvements in growth and processing, he believes.

In addition to silicon sublimation, EOC researchers Joshua Robinson, Mark Fanton, Brian Weiland, Kathleen Trumbull, and Michael LaBella are developing the synthesis and device fabrication of graphene on silicon using a non-sublimation route as a means to achieve wafer diameters exceeding 200mm, a necessity for integrating graphene into the existing semiconductor industry. Graphene has the potential to enable terahertz computing at processor speeds 100 to 1000 times faster than silicon.

First discovered in 2004, graphene is now being studied worldwide for electronics, displays, solar cells, sensors, and hydrogen storage. With its remarkable physical, chemical, and structural properties, graphene promises to become a key material for 21st century technology.


Story Source:

The above story is based on materials provided by Penn State Materials Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Penn State Materials Research Institute. "Key milestone reached on road to graphene-based electronic devices." ScienceDaily. ScienceDaily, 1 February 2010. <www.sciencedaily.com/releases/2010/01/100131215530.htm>.
Penn State Materials Research Institute. (2010, February 1). Key milestone reached on road to graphene-based electronic devices. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2010/01/100131215530.htm
Penn State Materials Research Institute. "Key milestone reached on road to graphene-based electronic devices." ScienceDaily. www.sciencedaily.com/releases/2010/01/100131215530.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Human or Robot You Decide

Human or Robot You Decide

Reuters - Business Video Online (Apr. 23, 2015) — An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins