Featured Research

from universities, journals, and other organizations

How the butterflies got their spots

Date:
February 6, 2010
Source:
University of Cambridge
Summary:
How two butterfly species have evolved exactly the same striking wing color and pattern has intrigued biologists since Darwin's day. Now, scientists have found "hot spots" in the butterflies' genes that they believe will explain one of the most extraordinary examples of mimicry in the natural world.

Mimetic races of Heliconius erato (left) and Heliconius melpomene (right) from the Tarapoto area of Peru.
Credit: Copyright Chris Jiggins, University of Cambridge

How two butterfly species have evolved exactly the same striking wing colour and pattern has intrigued biologists since Darwin's day. Now, scientists at Cambridge have found "hotspots" in the butterflies' genes that they believe will explain one of the most extraordinary examples of mimicry in the natural world.

Related Articles


Heliconius, or passion-vine butterflies, live in the Americas -- from the southern United States to southern South America. Although they cannot interbreed, H. melpomene and H. erato have evolved to mimic one another perfectly.

These delicate butterflies have splashes of red and yellow on their black wings, signaling to birds that they contain toxins and are extremely unpalatable. They mimic one another's colour and pattern to reinforce these warning signals.

Scientists have studied these butterflies since the 1860s as a classic case of evolution in action, but only now is modern sequencing technology unlocking the underlying genetics.

The Cambridge-led team of researchers from UK and US universities, which has been breeding the butterflies in Panama for the past decade, has been searching for the genes responsible for the butterflies' wing patterns and the answer to the question of whether the same genes in two different species are responsible for the mimicry.

According to Dr Chris Jiggins of the Department of Zoology at the University of Cambridge, one of the authors of the study: "The mimicry is remarkable. The two species that we study -- erato and melpomene -- are quite distantly related, yet you can't tell them apart until you get them in your hand. The similarity is incredible -- even down to the spots on the body and the minute details of the wing pattern."

That the two species have evolved to look exactly the same is due to predation by birds. "The birds will try anything that looks different in the hope that it's good, so they learn that certain wing patterns are unpalatable and avoid them, but anything that deviates slightly from what they've experienced before is more likely to be attacked," he explains.

These butterflies have been studied since Darwin's day because they are such a striking example of adaptation. For years, scientists have pondered whether when different species evolve to look the same, they share a common genetic mechanism.

According to Jiggins: "It's interesting because it tells us how flexible evolution is. If you get the same wing pattern evolving independently in different populations, do you expect the same genes to be involved?"

Because there are thousands of genes in the butterflies' genome, most scientists felt it was unlikely that the same genes should be involved. But the results of this study suggest that this is, in fact, the case.

The new results -- published today in two parallel papers in the journal PLoS Genetics -- show that the regions of the genome associated with the wing patterns are very small -- akin to genetic "hotspots."

"This tells us something about the limitations on evolution, and how predictable it is. Our results imply that despite the many thousands of genes in the genome there are only one or two that are useful for changing this colour pattern. It seems like evolution might be concentrated in quite small regions of the genome -- or hotspots -- while the rest of it does not change very much," says Jiggins.

This is not the only unexpected element of the study. The team was also surprised that the obvious candidate genes -- such as those involved in colour or wing pattern in other species -- do not seem to be involved in the passion-vine butterflies' mimicry.

According to Jiggins: "We think it's more likely to be some novel method of cellular signaling, which is quite intriguing and could be important in many other insect species."

The next stage of the research is to look at other traits, such as behaviour, because the butterflies have preferences for particular colours and use wing patterns to select mates. "It seems the same regions of the genome control this behaviour as well as the wing pattern. We'd like to understand this," he says.

The results are published in PLoS Genetics on 5 February 2010.

The Heliconius or passion-vine butterflies are tropical butterflies from the new world that show a huge diversity of wing patterns. They have undergone rapid speciation and divergence, and also show an amazing amount of convergence in wing pattern due to mimcry. Evolutionary biologists have studied these butterflies for over 150 years, and we now know a great deal about their ecology, systematics and evolution.

They have been long-studied by scientists as an example of Müllerian mimicry -- where two poisonous or unpalatable species evolve to look the same. By contrast, Batesian mimicry describes an edible species evolving to look like a species that is toxic or unpleasant to eat.

For information on Heliconius or passion-vine butterflies, visit http://www.heliconius.org


Story Source:

The above story is based on materials provided by University of Cambridge. Note: Materials may be edited for content and length.


Journal References:

  1. Baxter et al. Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade. PLoS Genetics, 2010; 6 (2): e1000794 DOI: 10.1371/journal.pgen.1000794
  2. Counterman et al. Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato. PLoS Genetics, 2010; 6 (2): e1000796 DOI: 10.1371/journal.pgen.1000796

Cite This Page:

University of Cambridge. "How the butterflies got their spots." ScienceDaily. ScienceDaily, 6 February 2010. <www.sciencedaily.com/releases/2010/02/100205213102.htm>.
University of Cambridge. (2010, February 6). How the butterflies got their spots. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/02/100205213102.htm
University of Cambridge. "How the butterflies got their spots." ScienceDaily. www.sciencedaily.com/releases/2010/02/100205213102.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins